

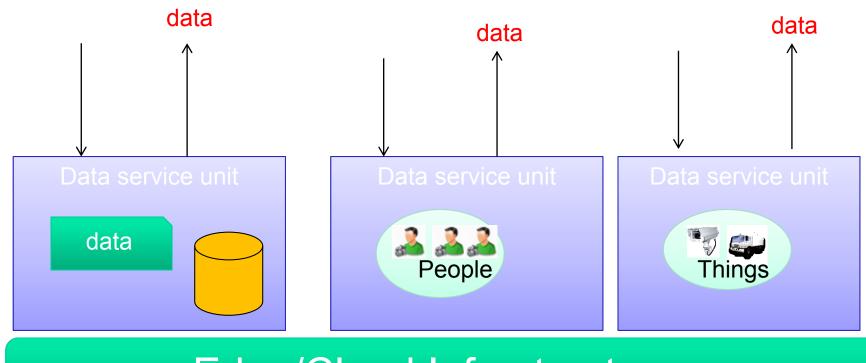
Data marketplaces: core models and concepts

Hong-Linh Truong
Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at http://dsg.tuwien.ac.at/staff/truong @linhsolar

Outline

- Data marketplaces
- Description models


Data contract model and evaluation

Data contract exchange models and architectures

Case study – design a data marketplace

Recall – data service units in clouds/internet

Edge/Cloud Infrastructures

Recall – data as a service

Data-as-a-Service – service models

Data publish/subcription middleware as a service

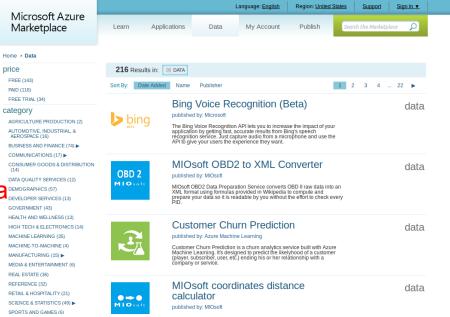
Sensor-as-a-Service

Database-as-a-Service (Structured/non-structured querying systems)

Storage-as-a-Service (Basic storage functions)

deploy

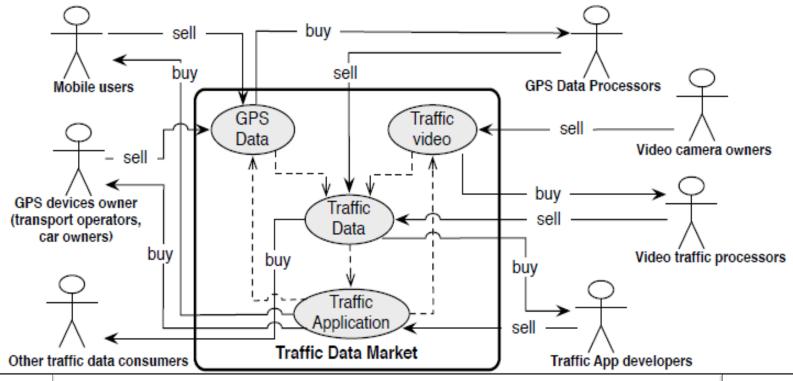
Edge and/or Cloud Systems


Data platform or marketplace?

http://www.guavus.com/platform/

The Guavus Reflex® Platform

http://datamarket.azure.com/browse/data


Data marketplaces

- More than just DaaS
 - DaaS focuses on data provisioning features
- Stakeholders in data marketplaces
 - Multiple data providers and consumers
 - Marketplace providers
 - Marketplace authorities
 - Analytics providers
 - Data transportation providers
 - Billing and payment providers

Example of stakeholders

Tien-Dung Cao, Quang-Hieu Vu, Duc-Hung Le, Hong-Linh Truong, Schahram Dustdar: MARSA: A Marketplace for Realtime Human-Sensing Data. http://dungcao.github.io/marsa/

Specific data market (Tokyo Tsukiji) or generic data market (Donau Zentrum)?

DISTRIBUTED SYSTEMS GROUP

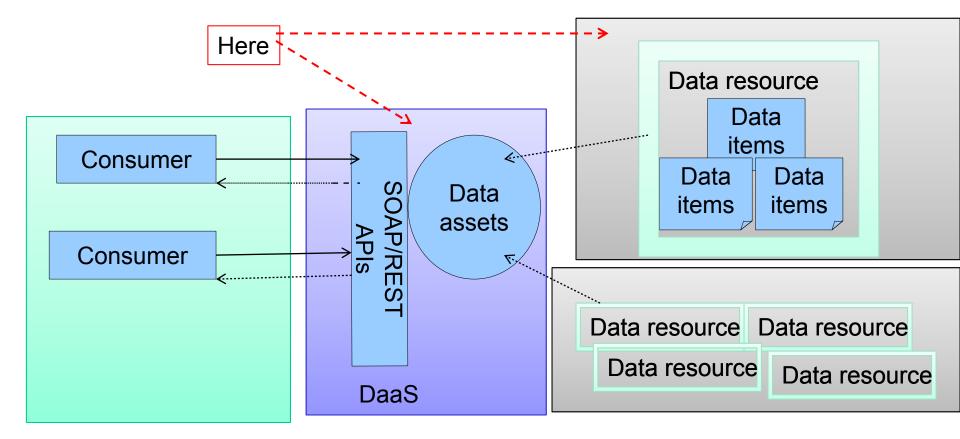
Technical services, protocols, mechanisms in data marketplaces

- Multiple DaaS provisioning
 - Access models and interfaces
- Complex interactions among DaaS providers, data providers, data consumers, marketplace providers, etc.
 - Data exchange as well as payment
- Complex billing and pricing models
- Market dynamics
- Service and data contracts

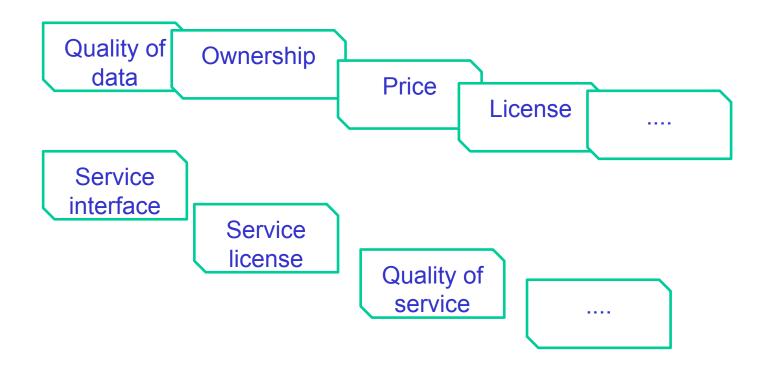
Some important issues

DAAS DESCRIPTION MODEL

DATA CONTRACT

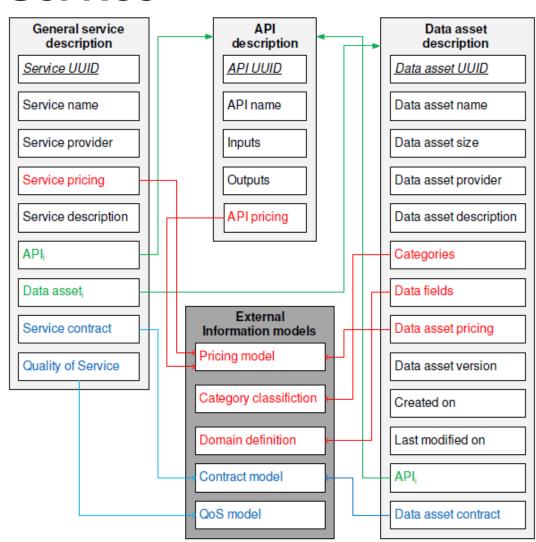

DATA CONTRACT EXCHANGE

Description Model for DaaS (1)

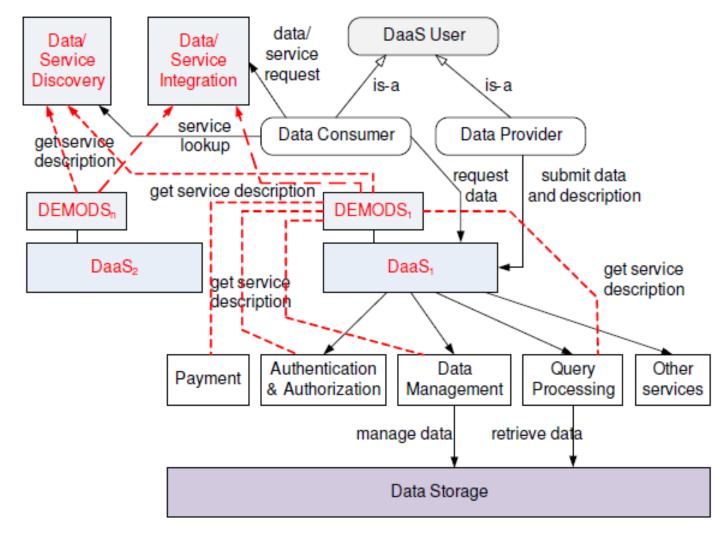

Which levels must be covered?

Description model for DaaS – types of information

Which types of information must be covered?



DEMOS – a description model for Data-as-a-Service


Quang Hieu Vu, Tran Vu Pham, Hong Linh Truong,, Schahram Dustdar, Rasool Asal: DEMODS: A Description Model for Data-as-a-Service. AINA 2012: 605-612

See prototype: http://www.infosys.tuwien.ac.at/ prototype/SOD1/demods/

Data marketplaces and related components/services

Data contract

How to specify data contract? Data resource Data items Consumer Data Data Data items items assets Consumer Data resource Data resource Data resource Data resource DaaS

Data contracts

- Give a clear information about data usage
- Have a remedy against the consumer for illegal data usage
- Limit the liability of data providers in case of failure of the provided data;
- Specify information on data delivery, acceptance, and payment

Data contracts

- Well-researched contracts for services but not for DaaS and data marketplaces
 - But service APIs != data APIs =! data assets
- Several open questions
 - Right to use data? Quality of data in the data agreement? Search based on data contract? Etc.
- Require extensible models
 - Capture contractual terms for data contracts
 - Support (semi-)automatic data service/data selection techniques.

Hong-Linh Truong, Marco Comerio, Flavio De Paoli, G.R. Gangadharan, Schahram Dustdar, "**Data Contracts for Cloud-based Data Marketplaces**", International Journal of Computational Science and Engineering, 2012 Vol.7, No.4, pp.280 - 295

Study of main data contract terms

- Data rights
 - Derivation, Collection, Reproduction, Attribution
- Quality of Data (QoD)
 - Not mentioned, Not clear how to establish QoD metrics
- Regulatory Compliance
 - Sarbanes-Oxley, EU data protection directive, etc.
- Pricing model
 - Different models, pricing for data APIs and for data assets
- Control and Relationship
 - Evolution terms, support terms, limitation of liability, etc.

Most information is in human-readable form

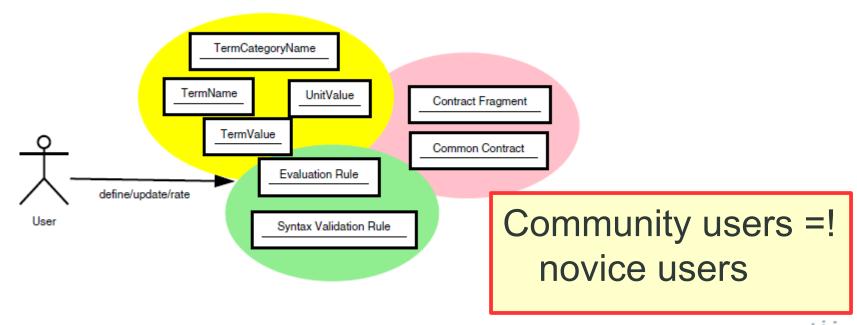
Data contract study

Table 1 Example of data contracts in real-world DaaS

		Dat	ta ri	ghts		Qual	ity of data	Compliance	Prici	ing model	Co	ntro	l and	relationship
Contracts	Derivation	Collection	Reproduction	Attribution	Non-commercial use	Completeness	Ассигасу		Transaction	Subscription	Warranty	Indemnity	Liability	Laws, Jurisdiction
AvianKnowledge.net				+	+				+	+	+	+	+	
(AKN, 2011)														
Building model		+			+			+		+	+	+	+	+
products (BMP, 2011)														
Creative common:	+	+	+	+							+	+	+	+
attribution-ShareAlike 2.0														
Generic (CCAS, 2011)														
Consumer expenditure data (CED, 2011)		+			+			+		+	+	+	+	+
Freebase data dump	+	+	+	+							+	+	+	+
(FDD, 2011)														
GBIF Data Usage Agreement (GBIF, 2011)	+	+	+	+				+			+	+	+	+
Infochimps Twitter Census:	+	+						+	+		+		+	+
Stock Twittes (TCST, 2011)														
Open Data Commons Attribution License (ODCAL, 2011)	+	+	+	+							+	+	+	
Open Government	+	+	+	+									+	
License (OGL, 2011)														
US Consumer Price Index: 1913 to current (USCPI, 2011)		+			+			+		+	+	+	+	+

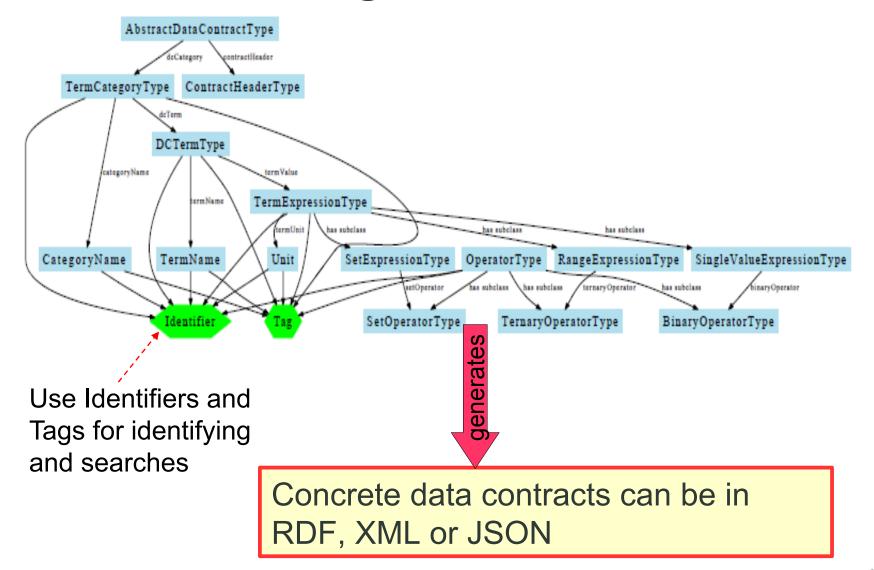
Hong-Linh Truong, Marco Comerio, Flavio De Paoli, G.R. Gangadharan, Schahram Dustdar, "**Data Contracts for Cloud-based Data Marketplaces**", International Journal of Computational Science and Engineering, 2012 Vol.7, No.4, pp.280 - 295

Developing data contracts in cloudbased data marketplaces


- Follow community-based approach for data contract
- Propose generic structures to represent data contract terms and abstract data contracts
- Develop frameworks for data contract applications
- Incorporate data contracts into data-as-a-service description
- Develop data contract applications

Community view on data contract development

- Community users can develop:
 - Term categories, term names, values, and units
 - Rules for data contracts
 - Common contract and contract fragments


Representing data contract terms

- Contract term: (termName,termValue)
 - Term name: common terms or user-specific terms
 - Term value: a single value, a set, or a range

Category	Term representation	Examples
Data rights	termName	$termName \hspace{-0.05cm}=\hspace{-0.05cm} \{ \texttt{Derivation, Collection,}$
	$= \{val_1, val_2, \cdots, val_n\}$	Reproduction, Attribution, Noncommercialuse},
		$val_i = \{ \text{Undefined, Null, Allowed,} \}$
		Required, True, False}
Quality of data	$val_l \le termName \le val_u$	$termName = \{$ Accuracy, Completeness,
		Uptodateness $\}$, val_l and $val_u \in [0,1]$
Compliance	termName	$termName$ and val_i are any string,
	$= \{val_1, val_2, \cdots, val_n\}$	e.g., $termName = \{PrivacyCompliance\}$
		<pre>and termValue={Sarbanes-Oxley (SOX) Act}</pre>
Pricing model	termName	termName is any string, e.g., MonthlyPayment;
	$= (cost = val_1,$	$val_1 \in R$, e.g., $cost = 50 \in$,
	$usagetime = val_2,$	$val_2 = \{(end_t - start_t); UNLIMITED\}$
	$, maximumuse = val_3)$	where end_t , $start_t \in datetime$,
		e.g., $usagetime = 30$ days; $val_3 \in N$,
		e.g, $maximumuse = 1,000$ calls
Control	termName = val	termName and val are any string, e.g.,
and relationship		termName={Liability, LawandJurisdiction}
•		and $val = \{US, Austria\}$

Structuring abstract data contracts

Development of contract applications

- Main applications:
 - Data contract compatibility evaluation, data contract composition
- Some common steps
 - Extract DCTermType in TermCategoryType
 - Extact comprable terms from all contracts,
 - e.g., dataRight: Derivation, Composition and Reproduction
 - Use evaluation rules associated with DCTermType from rule repositories
 - Execute rules by passing comparable terms to rules
 - Aggregate results

Evaluating Data Contracts

- Goal
 - Check the quality and reputation of a data contract
- We can check data contracts using quality of data metrics
 - Timeliness, Completeness, Reputation, Consistency metrics
- Examples
 - Free-per-use but cost = 100EUR
 - Missing "data accuracy" concern

Data Contract Compatibility

Goal

If multiple data contracts are compatible with the consumer needs

- → The consumer requires multiple data associated with different contracts
- Contract compatibility
 - Matching contract terms
 - Evaluating contract term compatibility and completeness w.r.t. application needs
 - Making decision in using data

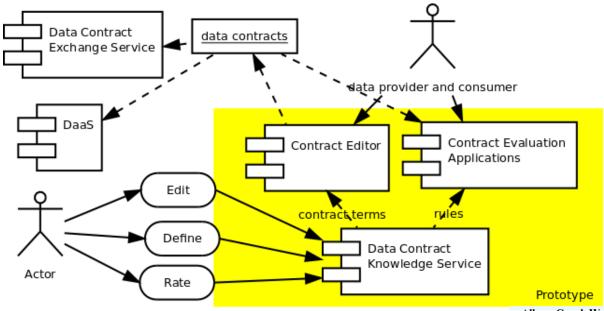

Example of contract compatibility evaluation

Table 3 Possible steps in making decisions based on contract compatibility evaluation

	Action	Case	Solution
Compatibility = 1	Check reputation, consistency and timeliness	Reputation = LOW	Change the data composition. Substitute the data provided by the untrustworthy DaaS.
		Consistency = LOW	Interact, if possible, with the DaaS providers to solve inconsistent contract terms.
		Timeliness = LOW	Interact, if possible, with the DaaS providers to update contract terms.
Compatibility < 1	Check completeness and timeliness	Completeness = LOW	Interact, if possible, with the DaaS providers to have additional contract terms.
		Timeliness = LOW	Interact, if possible, with the DaaS providers to update contract terms.

Conceptual architecture for contract management and evaluation

- Prototype
 - RDF for representing term categories, term names, term values, units
 - Allegro Graph for storing contract knowledge

AllegroGraph WebView 4.3 repository dc

« | Overview | Queries | Scripts | Namespaces | Admin | User linhsolar

Statements with AbstractDataContractType » as the subject.

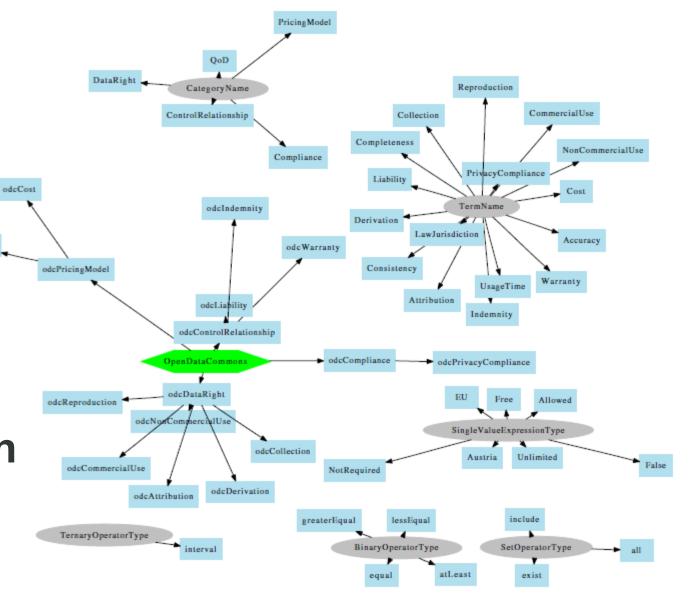
Predicate	Object	
rdf:type	owl:Class	×
rdfs:label	"AbstractDataContractType"	×
Add statement		

Statements with AbstractDataContractType » as the predicate.

Add statement...

Statements with AbstractDataContractType » as the object.

Subject	Predicate	
contractHeader	rdfs:domain	×
dcCategory	rdfs:domain	×
description	rdfs:domain	×
id	rdfs:domain	×
OpenBuildingCO2	rdf:type	×
OpenDataCommons	rdf:type	×
OpenGovernment	rdf:type	×
	/	



Illustrating examples

- A large sustainability monitoring data platform shows how green buildings are
 - Real-time total and per capita of CO2 emission of monitored building
 - Open government data about CO2 per capita at national level
- We created contracts from
 - Open Data Commons Attribution License
 - Open Government License

Existing common knowledge about Open Data Commons

odcUsageTime

Step 2: provide OpenBuildingCO2

OpenBuildingCO2 by modifying quality of data and data right

Statements with OpenBuildingCO2 » as the subject.

Predicate	Object	
rdf:type	owl:NamedIndividual	×
rdf:type	AbstractDataContractType	×
rdfs:label	"OpenBuildingCO2"	×
dcCategory	obcDataRight	×
dcCategory	obcQoD	×
dcCategory	od cComplia nce	×
dcCategory	odcControlRelationship	×
dcCategory	odcFinancial	×

OpenGov for government data

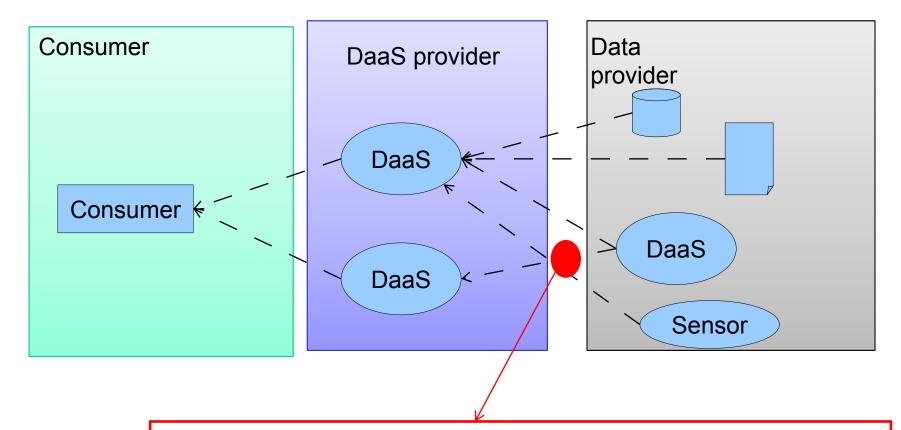
Statements with OpenGovernment » as the subject.

Predicate	Object	
rdf:type	owl:NamedIndividual	×
rdf:type	AbstractDataContractType	×
rdfs:label	"OpenGovernment"	×
dcCategory	ogCompliance	×
dcCategory	ogControlRelationship	×
dcCategory	ogDataRight	×
dcCategory	ogFinancial	×
contractHeader	ogHeader	×

Data contract for green building data

Example – composing data contract terms

```
Query Editor Query Library
PREFIX
adcm: <http://www.infosys.tuwien.ac.at/SOD1/adcm#>
CONSTRUCT {
adcm:compositeAccuracy adcm:lowerBound?compositeLowerBound.
 adcm:compositeAccuracy adcm:upperBound?compositeUpperBound.
WHERE {
 ?varAcc1 rdf:type adcm:SingleValueExpressionType .
 ?varAcc1 adcm:numericValue ?value .
 ?varAcc1 adcm:binaryOperator adcm:atLeast .
 ?varAcc2 rdf:type adcm:RangeExpressionType .
 ?varAcc2 adcm:lowerBound ?lowerBound .
 ?varAcc2 adcm:upperBound ?upperBound .
FILTER (?value <= ?upperBound) .
LET (?compositeLowerBound := afn:max(?value, ?lowerBound)) .
LET (?compositeUpperBound :=?upperBound) .
                                                                                          Object
                                       Subject
                                                                    [Predicate]
                                                                                          F 0.7
                                                                    ns1:lowerBound
                                      ns1:compositeAccuracy
                                                                                          0.95
                                      ns1:compositeAccuracy
                                                                    ns1:upperBound
```



Discussion time

CAN WE AUTOMATICALLY GENERATE DATA CONTRACTS FOR NEAR-REALTIME DATA?

Exchange data contract (1)

How do they interact w.r.t. data concerns? How do their data contracts look like?

Exchange data contract (2)

- Lack of models and protocols for data contract exchange in data marketplaces
 - Constraints for data usage are not clear
 - Inadequate data/service description → hindering automatic (near realtime) data selection and integration
- Existing techniques are not adequate for dynamic data contract exchange in data marketplaces

Need generic exchange models suitable for different ways of data provisioning in data marketplaces

Data Contract Exchange as a Service

- Metamodel for data contract exchange
 - More than data contracts themselves
- Techniques for enriching and associating data assets with contract terms
- Interaction models for data contract exchange

Hong Linh Truong, Schahram Dustdar, Joachim Götze, Tino Fleuren, Paul Müller, Salah-Eddine Tbahriti, Michael Mrissa, Chirine Ghedira: Exchanging Data Agreements in the DaaS Model. APSCC 2011: 153-160

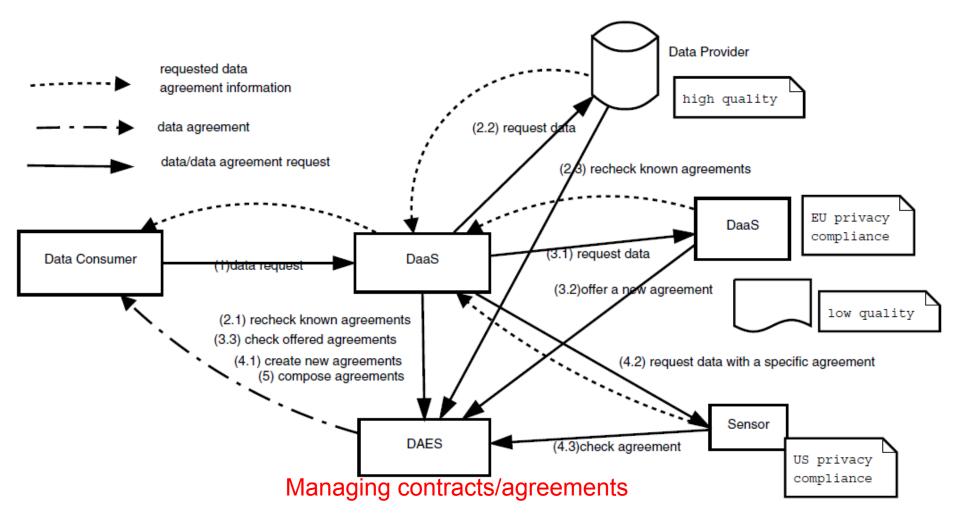
Metamodel for data contract exchange

- Different category of agreements
 - Licensing, privacy, quality of data
- Extensions
 - Languages
 - Different types of agreements
 - Different specifications

dataAgreementType + identification + extension 1..1 1..1 identificationType +agreementId:anyURI +dataAsset:anyURI extensionType +dataSource:anyURI +dataAssetProvider:anyURI +dataAssetConsumer: anyURI +creationDate:dateTime +dataAgreementExchangeService:anyURI +agreementStatus: string agreementReference agreement 0..* 0..* agreementReferenceType agreementType +content:anyURI +«attribute» agreementSchema : anyURI +«attribute» agreementSchema: anyURI + « attribute » category : string [0..1] +«attribute» category: string [0..1] content 1..1 «complexType» anyType + «any, element» wildcard [0..*] + «an v. attribute» wild card

ASE Summer 2016

Associating data with data contracts


Solutions

- (a) directly inserting contracts into data assets
- (b) providing two-step access to contracts and data assets
- (c) linking data contracts to the description of DaaS
- (d) linking data contracts to the message sent by DaaS

coupling	tight-coupling	loose-coupling			
technical solution	(a)	(b)	(c)	(d)	
structured data	(+)ciphering possible	(+)data-independent	(-)service-specific data agreement	(+)message-specific agreement	data
	(-)requires specific client (-)not scalable (-)modifies data structure	(-)manual access only	(-)no enforcement possible	(+)ciphering possible	
unstructured data	(+)data agreement enforcement possible (+)ciphering possible (-)requires specific consumer	(+) data-independent (-)manual access only	(-)service-specific data agreements (-)no enforcement possible	(+)message-specific agreement (+)ciphering possible	data
	(-)costly data agreement injection				

Possible interaction models for data enriched with data contracts

Illustrating examples – insert agreement into data asset

- A pay-per-use consumer uses dataAPI of DaaS search for data
 - The consumer pays the use APIs

Each call can return different types of data

Example of searching people

But a strong consequence for data service engineering techniques: dealing with elastic requirements!

```
{"results":[
dataagreement:{
    extension: {
       agreementReference:
             category: ''licensing'',
            agreementSchema : ''urn: at: act: tuwien: infosys:
                  license: twitter'',
             content: '' http://.../DAES/da/references/
                  retrieve/peoplesearch-license'',
\{ "description": "Student: spatial planning, music. Location:
     Vienna. Interests: Everything
nerdy. ", "location": "Vienna,
Austria", "time zone": "Vienna", "user id": REMOVED, "
      utc offset": "3600", "name": "REMOVED", "scraped at"
      :1259592694000, "screen name": "REMOVED" },
...}}
```


Illustrating examples – link agreements to geospatial data

- Domain-specific DaaS: different agreements for different data requests
 - Vector data of geographic features via Web-Feature-Service (WFS)
 - Terrain elevation data via Web-Coverage Services (WCS)

```
-<identification>
   <agreementId>urn:de:icsyagreement:1</agreementId>
   <dataAsset>urn:de:icsy:asset:wcs:1</dataAsset>
 -<dataSource>
     http://qdi-arc1.gridlab.uni-kl.de/arcqis01/services/Hamburg WFS/MapServer/WCSServer?service=WCS
   </dataSource>
 -<dataAssetProvider>
     http://qdi-arc1.gridlab.uni-kl.de/arcqis01/services/Hamburg WFS/MapServer/WCSServer?service=WCS
   </dataAssetProvider>
   <dataAssetConsumer>urn:de:icsy:j_goetze</dataAssetConsumer>
   <creationDate>2011-07-04T20:11:15.029Z</creationDate>
  -<dataAgreementExchangeService>
     http://sod.infosys.tuwien.ac.at:7101/services/jersey/DAES
   </dataAgreementExchangeService>
   <agreementStatus>AGREED</agreementStatus>
 </identification>
-<extension>
  -<agreementReference agreementSchema="urn:de:icsy:license:wcs" category="licensing">
   -<content>
      http://sod.infosys.tuwien.ac.at:7101/services/jersey/DAES/da/references/retrieve/license wcs
     </content>
   </agreementReference>
 </extension>
</ns0:dataAgreement>
```


Illustrating examples – link agreements to geospatial data

-<o-ex:rights xsi:schemaLocation="http://www.opengis.net/wcs http://schemas.opengis.net/wcs/1.0.0/getCoverage.xsd http://schemas.xsd http://sch EX-11.xsd http://odrl.net/1.1/ODRL-DD http://odrl.net/1.1/ODRL-DD-11.xsd">

```
-<o-ex:offer>
 -<o-ex:asset o-ex:id="ASSET1">
   -<o-ex:context>
      <o-dd:uid>WCS ASSET1</o-dd:uid>
     -<wcs:request>
      -<wcs:getCoverage>
        -<wcs:listOfLayers wcs:setFunction=
           <wcs:layer>composite</wcs:layer>
           <wcs:layer>amp</wcs:layer>
         </wcs:listOfLayers>
        -<wcs:defaultZoomIn>
           <wcs:unrestricted/>
         </wcs:defaultZoomIn>
        </wcs:getCoverage>
      </wcs:request>
     -<o-dd:service>
        http://gdi-arc1.gridlab.uni-kl.de/arcgis01/services/Hamburg WFS/MapServer/WCSServer?service=WCS
      </o-dd:service>
    </o-ex:context>
   </o-ex:asset>
 -<o-ex:asset o-ex:id="ASSET2">
   -<o-ex:context>
      <o-dd:uid>WMS ASSET2</o-dd:uid>
     -<wcs:request>
      -<wcs:getCoverage>
        -<wcs:listOfLayers wcs:setFunction="include">
           <wcs:laver>criobe</wcs:laver>
         </wcs:listOfLayers>
        -<wcs:defaultZoomIn>
```

Software can interpret and reason if the data can be used for specific purposes

Illustrative examples – develop an app for policy compliance (1)

```
public class TwitterCompatibilityApp implements
    DataAgreementAppInterface {
    // . . .
    public String getResult() {
        return output;
    public void setDataAgreements(List dataAgreements,
        boolean reference) {
        this.dataAgreements = dataAgreements;
        // . . . .
    public void execute() {
        ModelManager mm = new ModelManager();
        String agreementReference1 = (String)dataAgreements
             . get (0);
        String agreementReference2 = (String)dataAgreements
             . get (1);
        OntModel m1 = mm. loadFromAgreementContent(
             agreementReference1);
        OntModel m2 = mm. loadFromAgreementContent(
             agreementReference2);
        boolean valid1 = mm. validateModel(m1);
        boolean valid2 = mm. validateModel (m2);
        boolean compatible =mm. is Compatible (m1, m2);
        output="<?xml version=\"1.0\" encoding=\"UTF-8\"
             ?>\n" +
        // ...
    public void setDescription (DataAgreementApp description
```


Illustrative examples – develop an app for policy compliance (2)

Configuration

```
<dataAgreementApp>
 <withPlugin>RDF-Policy-Twitter-Mashup-CompApp</withPlugin</p>
 <withCapabilities>
   <dataAgreementAppCapability name="compatibility" value=</p>
         "true"/>
   <dataAgreementAppCapability name="validation" value="</pre>
         true"/>
   <worksWithSpects>
     <dataAgreementSpecification>
       <contentURI>http://sod.infosys.tuwien.ac.at:7101/
             services/jersey/DAES/daspecs/retrieve/
            twitterpolicy</contentURI>
       <language>RDF
     </dataAgreementSpecification>
   </worksWithSpects>
 </wi>
</dataAgreementApp>
```

Results

-<compatibilityresult>
 <validation agreementReference="twitterpolicy1" value="true"/>
 <validation agreementReference="twitterpolicy2" value="true"/>
 <compatibility>false</compatibility>
 </compatibilityresult>

Discussion time

HOW DOES NEAR-REALTIME DATA IMPACT ON DATA CONTRACT EXCHANGE?

Data Market without Marketplace?

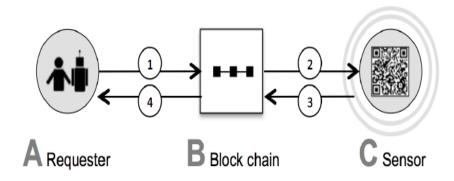


Fig. 1. Schema for the atomic S²aaS process of exchanging a single datum for cash using Bitcoin.

Kay Noyen, Dirk Volland, Dominic Wörner, Elgar Fleisch: When Money Learns to Fly: Towards Sensing as a Service Applications Using Bitcoin.

But what about data contract?

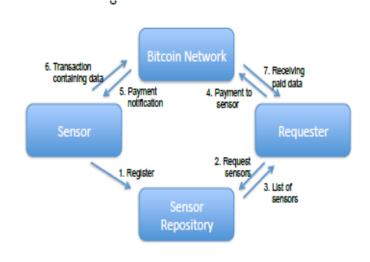


Figure 1: Process for exchanging data for bitcoin.

Dominic Wörner and Thomas von Bomhard. 2014. When your sensor earns money: exchanging data for cash with Bitcoin. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (UbiComp '14 Adjunct). ACM, New York, NY, USA, 295-298.

Some data marketplaces and their features

Products	Data type	Data	Publishing	Cost model	Auto-	Data con-	Payment
		source	/delivery		lookup	tract	
MARSA	Realtime,	IoT	MOM^5 , IoT	Flexible ⁶	yes	yes	online
	streaming	devices	platform				billing
Xignite	Datasets,	Range,	Files, API	Asset, deliv-	Yes	N/A	N/A
	realtime	finance		ery			
Amazon	Datasets	Range	Files	Free	N/A	N/A	N/A
Azure	Datasets	Range	OData API	Subscription	N/A	Publisher	N/A
						offer terms	
Factual	Datasets	Geography	Files, API	Free/ sub-	Yes	Terms of	N/A
				scription		services	
Trimble	Datasets	Geography	Files	per user/ de-	N/A	License	N/A
insphere				vice/ data		Agreement	
Gnip	Realtime,	Social	API	N/A	Yes	N/A	N/A
	historical	network					
Sense2Web	Realtime,	IoT	MOM, IoT	N/A	Yes	N/A	N/A
	streaming	devices	platform				

Tien-Dung Cao, Tran-Vu Pham, Quang-Hieu Vu, Hong-Linh Truong, Duc-Hung Le, Schahram Dustdar, "MARSA: A Marketplace for Realtime Human-Sensing Data," Transactions on Internet Technology, 2016

CASE STUDY – DESIGN DATA MARKETPLACE

MARSA: A Marketplace for Realtime Human-Sensing Data

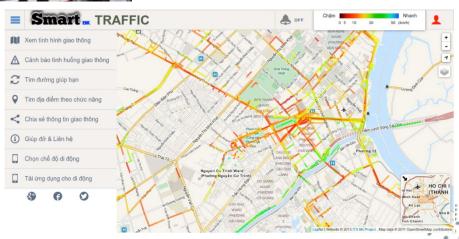
Cao, Tien-Dung; Pham, Tran-Vu; Vu, Quang-Hieu; Le, Duc-Hung

; Truong, Hong-Linh; Dustdar, Schahram

ACM Transactions on Internet Technology, 2016

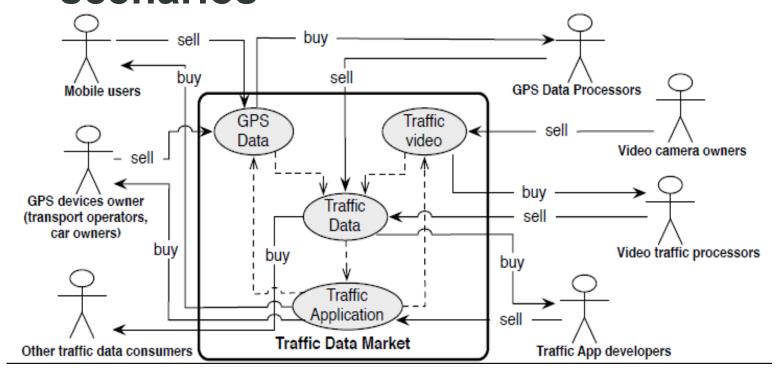
http://dungcao.github.io/marsa/

Traffic problems in HoChiMinh City



- Crowded and unpredictable
- Needs a lot of data to understand traffics
- Lack infrastructures for collecting traffic information
- Common problems in developing countries

Figure sources: Internet


Cannot buy expensive traffic data collection systems!

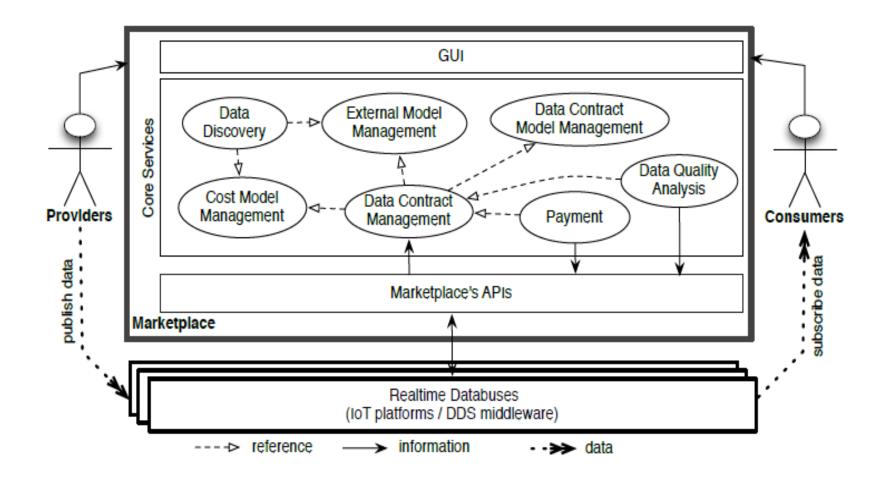
ASE Summer 2016

Market-oriented View of traffic data scenarios

4000 citybus fleet, 0.25MB per day per bus (7.5MB/month/bus), 30GB for the fleet

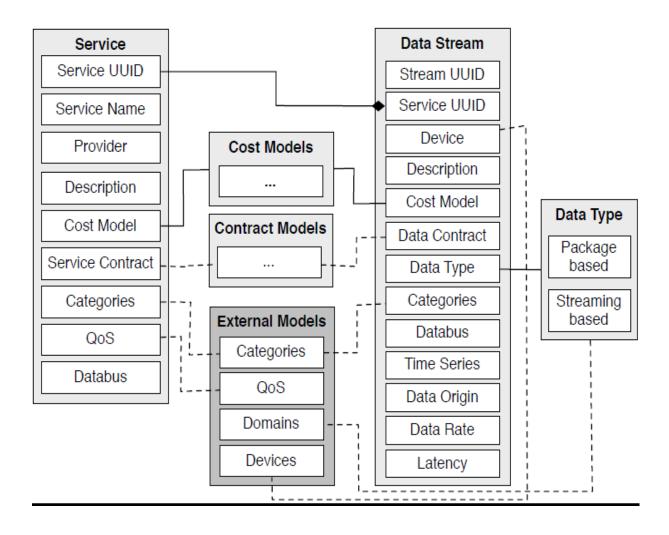
1MB of GPS data =20 USD cent → 6000 USD for the fleet operators

A mobile phone, like a bus, can receive 1.5 USD per month $\rightarrow \frac{1}{2}$ of 3G data bill

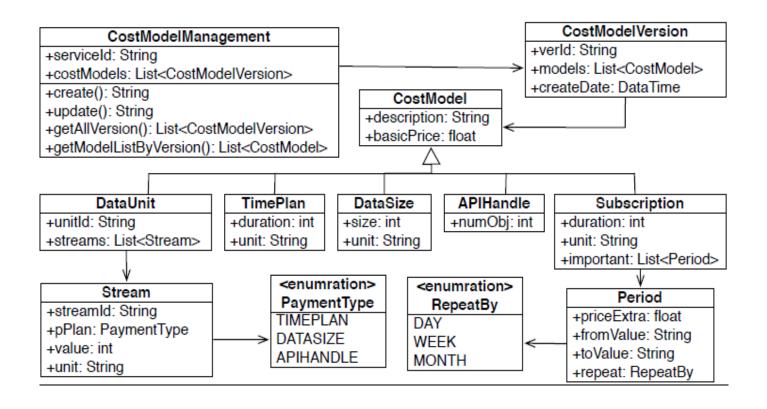


Costs and benefits

Parties	Costs of collecting raw data	Benefits from processed traffic data		
Bus, taxi	GPS devices, Internet and mobile network	Able to track status of their buses, knowl-		
and truck	subscription fees, acquiring and maintain-	edge of current traffic conditions to better		
operators	ing data at servers	provide services to commuters		
Private car	GPS devices, mobile network subscription	Knowledge of current traffic conditions to		
owners	fees	better navigate in cities		
Mobile de-	Mobile devices (e.g. smartphones, tablets),	Knowledge of current traffic conditions to		
vice owners mobile network subscription fees and de-		better navigate in cities		
	vice battery time			
Video cam-	Video cameras and network connections to	Selling of video data and traffic informa-		
era owners	video cameras	tion		
Data pro-	Cost of raw data, infrastructures for col-	Selling traffic data		
cessors	lecting and processing raw data			
Traffic data	Buying traffic data	Knowledge of current traffic conditions to		
users		better navigate in cities		

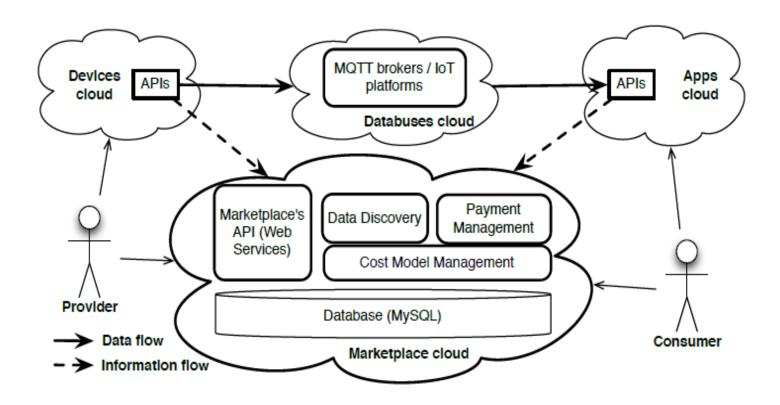


MARSA Design

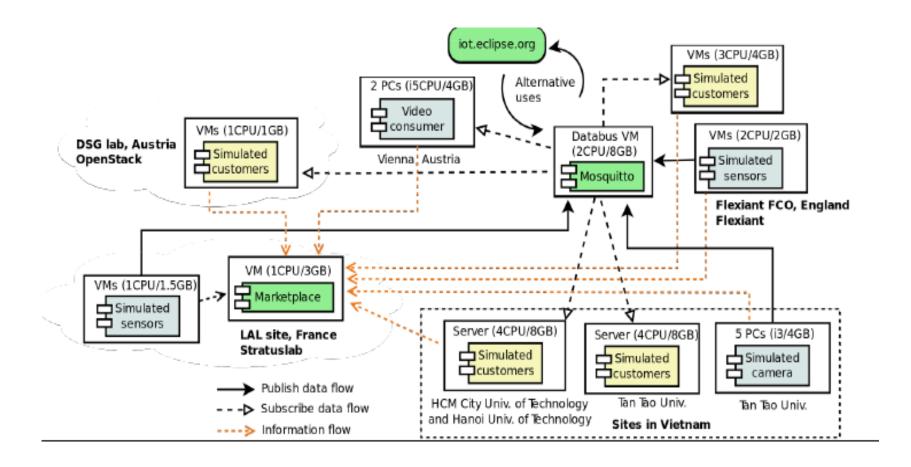


MARSA description for humansensing data marketplace

Cost model



Quality of data has not supported yet



Implementation

Testbed

Example of bills

Bill No.: 2015/03-5.1

From date: 2015-03-30 12:39:53 To date: 2015-03-30 18:40:57

Status: Not Payment

Payment on DATA_SIZE (5.0 \$ / 1 GB)

List of streams

No.	Stream UUID	Size	Price		
1	suuid1427702254973/sid1	0.219 GB	\$ 1.1		
2	suuid1427702254973/sid2	0.0217 GB	\$ 0.11		
3	suuid1427702254973/sid3	0.0550 GB	\$ 0.28		
4	suuid1427702254973/sid4	0.181 GB	\$ 0.9		
5	suuid1427702254973/sid5	0.205 GB	\$ 1.02		
	Total prices \$ 2.41				

Payment on SUBSCRIPTION (2.0 \$ / 1 HOUR)

List of streams

No	. Stream UUID	Size	Price	Size Extra	Price Extra	Sum Price
1	suuid1427702254973/sid11	3.67 HOUR	\$ 7.34	0	\$0	\$ 7.34
2	suuid1427702254973/sid12	6.02 HOUR	\$ 12.04	0	\$0	\$ 12.04
	Total Price: \$ 19.38					

Total price of contract: \$ 22.79

Exercises

- Read mentioned papers
- Examine existing data marketplaces and write DEMODS-based specification for some of them
- Develop some specific data contracts for open government data
- Work on some algorithms for checking data contract compatibility
- Incorporate data marketplaces concepts into your scenario
- Build your own mini data marketplace

Thanks for your attention

Hong-Linh Truong
Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at http://dsg.tuwien.ac.at/staff/truong

@linhsolar

