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What this lecture is about

 Data analytics – general view

 Data analytics workflow structures and systems 

 Enable quality of analytics (QoA) for data

analytics

 Quality of data in data analytics workflows

 Data elasticity management
ASE Summer 2016 2



What this lecture is about

 After this lecture

 Apply and revise the analytics part in your project

 Deal with quality of analytics and see how you could

offer quality-aware analytics in your project
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Big Data

 Big volume, Big velocity, Big variety, Big 

Veracity 

 Sources

 Internet of Things, human participation, social 

networks, software services, environment monitoring, 

advanced science instruments, science discovery, 

etc. 

 Several challenges in terms of data gathering, 

integration, and  analytics 
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Data Management/Delivery

Systems

 Static data – data at rest

 Hadoop file systems

 Large scale storage data systems

 iRODS, NoSQL

 Web services for Data-as-a-Service (e.g., GIS)

 Real time data – data in motion

 Cloud data platforms, e.g. Xively

 Several MOM (Message-oriented Middleware)

 E.g., Apache Kafka

 Domain-specific streamming systems (e.g., images)
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Data Processing Framework

 Batch processing

 Mapreduce/Hadoop

 Scientific workflows

 (Near) realtime streaming processing

 S4 & Storm

 Hybrid data processing

 Summingbird, Apache Kylin

 Impala, Storm-YARN 

 Apache Spark
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Data Analytics

Conceptual View
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Data analytics processes – a bird view
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Computation 

Service

Computation 

Service

We use the term „process“ in a generic meaning!!!

Important notes: Structures

and resources



Data analytics processes

 Main categories

 (Batch) workflow-based processing

 Stream data processing

 Hybrid data processing
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Workflow-based processing 

mProject1Service.java

public void mProject1() {

}

mProject1Service.java

public void mProject1() {

}

WorkflowWorkflow

A();A();

<parallel>

</parallel>

<parallel>

</parallel>

Workflow Region nWorkflow Region n

Activity mActivity m

Invoked Application mInvoked Application m

Code 

Region 1

Code 

Region 1

Code 

Region q

Code 

Region q

Code 

Region …

Code 

Region …

<activity name="mProject1">

<executable name="mProject1"/>

</activity>

<activity name="mProject1">

<executable name="mProject1"/>

</activity>

<activity name="mProject2">

<executable name="mProject2"/>

</activity>

<activity name="mProject2">

<executable name="mProject2"/>

</activity>

while () {

...

}

while () {

...

}

Hong Linh Truong, Schahram Dustdar, Thomas Fahringer: Performance 

metrics and ontologies for Grid workflows. Future Generation Comp. 

Syst. 23(6): 760-772 (2007)

Hong Linh Truong, Schahram Dustdar, Thomas Fahringer: Performance 

metrics and ontologies for Grid workflows. Future Generation Comp. 

Syst. 23(6): 760-772 (2007)
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Different views of (data analytics) 

workflow systems

11
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Execution
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Stream data processing 

 Processing 

elements/operators 

are arranged in 

graphs

 Streaming data 

comes to processing 

elements

 Results from an 

element are passed to 

another
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Source: Neumeyer, L.; Robbins, B.; Nair, A.; Kesari, A., "S4: 

Distributed Stream Computing Platform," Data Mining Workshops 

(ICDMW), 2010 IEEE International Conference on , vol., no., 

pp.170,177, 13-13 Dec. 2010

Source: Neumeyer, L.; Robbins, B.; Nair, A.; Kesari, A., "S4: 

Distributed Stream Computing Platform," Data Mining Workshops 

(ICDMW), 2010 IEEE International Conference on , vol., no., 

pp.170,177, 13-13 Dec. 2010

Check also: http://www.infosys.tuwien.ac.at/teaching/courses/socloud/ws2011/slides/streamprocessing.pdf



Hybrid data processing
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Source:http://lambda-architecture.net/

Combine batch processing and streaming processing

e.g., https://spark.apache.org/



Applications

 When we have different problems required 

different data processing models for different 

workload/performance

 Near realtime monitoring + predictive analytics

 Support many phases in data integration and 

analytics with the same framework

 Dealing with static and realtime data in decision 

making
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WORKFLOWS
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Data analytics workflow execution 

models
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Data analytics workflow execution 

models
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Representing and programming 

data analytics workflows/processes

 Programming languages

 General- and specific-purpose programming 
languages, such as Java, Python, Swift

 Programming models

 such as MapReduce, Hadoop, Complex event processing, Spark

 Descriptive languages

 BPEL and several languages designed for specific 
workflow engines

 They can also be combined
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Examples of systems and 

frameworks for data analytics 

workflows
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ASKALONASKALON

KEPLERKEPLER

TAVERNATAVERNA

TRIDENTTRIDENT

Apache ODE + 

WS-BPEL

Apache ODE + 

WS-BPEL

PegasusPegasus

JOperaJOperaADEPTADEPT

MapReduce/HadoopMapReduce/Hadoop

SwiftSwiftRR

AirflowAirflow



Pros and cons of (data analytics) 

workflow systems 
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Some examples (1)
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Source: Gideon Juve, Ewa Deelman, G. Bruce Berriman, Benjamin P. Berman, Philip Maechling: An Evaluation of the 

Cost and Performance of Scientific Workflows on Amazon EC2. J. Grid Comput. 10(1): 5-21 (2012)

Source: Gideon Juve, Ewa Deelman, G. Bruce Berriman, Benjamin P. Berman, Philip Maechling: An Evaluation of the 

Cost and Performance of Scientific Workflows on Amazon EC2. J. Grid Comput. 10(1): 5-21 (2012)



Some examples (2)
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Source: http://www.dps.uibk.ac.at/projects/brokerage/Source: http://www.dps.uibk.ac.at/projects/brokerage/



Some examples (3)
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Source: Cesare Pautasso, Thomas Heinis, Gustavo Alonso: JOpera: Autonomic Service 

Orchestration. IEEE Data Eng. Bull. 29(3): 32-39 (2006)

Source: Cesare Pautasso, Thomas Heinis, Gustavo Alonso: JOpera: Autonomic Service 

Orchestration. IEEE Data Eng. Bull. 29(3): 32-39 (2006)



Some examples (4)
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Source: Sudipto Das, Yannis Sismanis, Kevin S. Beyer, Rainer Gemulla, Peter J. Haas, and John McPherson. 2010. 

Ricardo: integrating R and Hadoop. In Proceedings of the 2010 ACM SIGMOD International Conference on Management 
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of data (SIGMOD '10). ACM, New York, NY, USA, 987-998. DOI=10.1145/1807167.1807275 

http://doi.acm.org/10.1145/1807167.1807275 



Airflow from Airbnb

 Workflow is a DAG (Direct Acyclic Graph)

 Task/Operator: 

 BashOperator, PythonOperator, EmailOperator,  

HTTPOperator, SqlOperator, Sensor, 

 DockerOperator, HiveOperator, S3FileTransferOperator, 

PrestoToMysqlOperator, SlackOperator
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Source: http://pythonhosted.org/airflow



Mapreduce
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Source: Jeffrey Dean and Sanjay Ghemawat. 

2008. MapReduce: simplified data processing on 

large clusters. Commun. ACM 51, 1 (January 

2008), 107-113. DOI=10.1145/1327452.1327492 

http://doi.acm.org/10.1145/1327452.1327492

Source: Jeffrey Dean and Sanjay Ghemawat. 

2008. MapReduce: simplified data processing on 

large clusters. Commun. ACM 51, 1 (January 

2008), 107-113. DOI=10.1145/1327452.1327492 

http://doi.acm.org/10.1145/1327452.1327492



QUALITY OF ANALYTICS
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Quality of Analytics (QoA)

 Characterize the results of analytics processes

 Different elements of QoA

 Performance

 Data quality

 Cost

 Form/data format of output results

 Etc.

 Customer: expects QoA

 Provider: offers QoA and enforces QoA
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Performance and Data Quality 

Aspects

29

Data Analytics   

Data in

Data out

Executed on

Analytics 

Processes
uses

Execution time? 

Performance Overhead? 

Memory Consumption?

Is the data good 

enough?

How bad data 

impacts on 

performance?

Is the data good enough 

to be stored and shared?

Data quality metrics and models are 

strongly domain-specific

Data quality metrics and models are 

strongly domain-specific

Which processes should 

be used?

ASE Summer 2016 29



SO HOW DO WE ENABLE

QOA-AWARE ANALYTICS?

ASE Summer 2016 30



Solutions

 Computational resources provisioning?

 Replication of analytics ?

 Performance and cost measurement and

optimization? 

 Improve quality of input data ?

 Improve the quality of output data?
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Hong Linh Truong, Peter Brunner, Vlad Nae, Thomas Fahringer: DIPAS: A distributed performance analysis service for 

grid service-based workflows. Future Generation Comp. Syst. 25(4): 385-398 (2009)

Hong Linh Truong, Peter Brunner, Vlad Nae, Thomas Fahringer: DIPAS: A distributed performance analysis service for 

grid service-based workflows. Future Generation Comp. Syst. 25(4): 385-398 (2009)

Well-addressed concerns --

performance
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Well-addressed concerns –

performance/cost
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Source: David Chiu, Sagar Deshpande, Gagan Agrawal, Rongxing Li: Cost and accuracy sensitive dynamic workflow 

composition over grid environments. GRID 2008: 9-16

Source: David Chiu, Sagar Deshpande, Gagan Agrawal, Rongxing Li: Cost and accuracy sensitive dynamic workflow 

composition over grid environments. GRID 2008: 9-16



QUALITY OF DATA IN DATA 

ANALYTICS WORKFLOWS
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Very little support

 Qurator workbench

 “Personal quality models” can be expressed and 

embedded into query processors or workflows. 

 Assume that quality evidence is presented

 Kepler

 A data quality monitor  allows user to specify quality 

thresholds. 

 Expect that rules can be used to control the execution 

based on quality.  
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Research questions

 What are main QoD metrics, what are the relationship between QoD 

metrics and other service level objectives, and what are their roles 

and possible trade-offs?

 How to support different domain-specific QoD models and link them 

to workflow structures?

 How to model, evaluate and estimate QoD associated with data 

movement into, within, and out to workflows? When and where 

software or scientists can perform automatic or manual QoD 

measurement and analysis

 How to optimize the workflow composition and execution based on 

QoD specification?

 How does QoD impact on the provisioning of data services, 

computational services and supporting services?
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Approach
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Core models, techniques and algorithms to allow 
the modeling and evaluating QoD metrics
Core models, techniques and algorithms to allow 
the modeling and evaluating QoD metrics

QoD-aware composition and executionQoD-aware composition and execution

QoD-aware service provisioning and 
infrastructure optimization
QoD-aware service provisioning and 
infrastructure optimization



Modeling and evaluating QoD 

metrics for data analytics   

workflows
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QoD-aware optimization for data 

analytics workflow composition 

and execution
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HOW TO INTEGRATE QOD

EVALUATORS? AND WHICH CONCERNS 

NEED TO BE CONSIDERED?

ASE Summer 2016 40



QoD metrics evaluation

 Domain-specific metrics

 Need specific tools and expertise for determining 

metrics

 Evaluation

 Cannot done by software only: humans are required

 Complex integration model

 Where to put QoD evaluators and why?

 How evaluators obtain the data to be evaluated?

 Impact of QoD evaluation on performance of 

data analytics workflows
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WHAT KIND OF OPTIMIZATION CAN BE 

DONE?
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QoD-aware optimization for data 

analytics workflows

 Improving quality of analytics

 Reducing analytics costs and time

 Enabling early failure detection

 Enabling elasticitiy of services provisioning

 Enabling elastic data analytics support

 Etc.
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EXAMPLE: QOD-AWARE 

SIMULATION WORKFLOWS
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QoD-aware simulation workflows

Michael Reiter, Hong Linh Truong, Schahram Dustdar, Dimka Karastoyanova, Robert Krause, Frank Leymann, Dieter 

Pahr: On Analyzing Quality of Data Influences on Performance of Finite Elements Driven Computational Simulations. 

Euro-Par 2012: 793-804

Michael Reiter, Uwe Breitenbücher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, Hong Linh Truong: A 

Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows. eScience 2011: 105-112

Michael Reiter, Hong Linh Truong, Schahram Dustdar, Dimka Karastoyanova, Robert Krause, Frank Leymann, Dieter 

Pahr: On Analyzing Quality of Data Influences on Performance of Finite Elements Driven Computational Simulations. 

Euro-Par 2012: 793-804

Michael Reiter, Uwe Breitenbücher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, Hong Linh Truong: A 

Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows. eScience 2011: 105-112
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Hybrid resources needed for 

quality evaluation 

 Challenges:

 Subjective and objective evaluation

 Long running processes

 Our approach

 Different QoD measurements

 Human and software tasks 
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Evaluating quality of data in 

workflows

Michael Reiter, Uwe Breitenbücher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, Hong Linh Truong: A 

Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows. eScience 2011: 105-112

Michael Reiter, Uwe Breitenbücher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, Hong Linh Truong: A 

Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows. eScience 2011: 105-112
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QoD Evaluator

 Software-based QoD evaluators

 Can be provided under libraries integrated into 

invoked applications

 Web services-based evaluators

 Human-based QoD evaluators

 Built based on the concept human-based services

 Can be interfaces via Human-Task

 Simple mapping at the moment

 Human resources from clouds/crowds
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How to support QoA driven analytics with 

tradeoffs of multiple criteria?

QoA: QoD, performance, cost, etc.



Quality-of-analytics  driven 

workflows

 How to support QoA driven analytics?

 Some basic steps

 Conceptualize expected QoA

 Associate the expected QoA with workflow activities

 Use the expected QoA

 to match/select underlying services (e.g., data sources, 

cloud IaaS, etc

 Utilize the expected QoA and the measured QoA and 

apply elasticity principles for 
 Refine the workflow structure

 Provision computation, network and data
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Using Data Elasticity 

Management Process to ensure QoA
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Tien-Dung Nguyen, Hong Linh Truong, Georgiana Copil, Duc-Hung Le, Daniel Moldovan, Schahram Dustdar:

On Developing and Operating of Data Elasticity Management Process. ICSOC 2015: 105-119

Tien-Dung Nguyen, Hong Linh Truong, Georgiana Copil, Duc-Hung Le, Daniel Moldovan, Schahram Dustdar:

On Developing and Operating of Data Elasticity Management Process. ICSOC 2015: 105-119



Exercises

 Read mentioned papers

 Discuss pros and cons of descriptive languages - and 

programming languages – based data analytics 

workflows

 Examine how QoD evaluators can be integrated into 

different programming models for QoA-aware data 

analytics workflows 

 Implement some QoD evaluators

 Develop techniques for determining places where  QoD 

evaluators can be performed in your mini projects

 Support data elasticity management in your mini project
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Thanks for 
your attention

Hong-Linh Truong
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@linhsolar
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