

Advanced Services Engineering, Summer 2018, Lecture 5

Big data service systems: Models, Elasticity, and Platforms

Hong-Linh Truong Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at www.infosys.tuwien.ac.at/staff/truong @linhsolar

- Data analytics within a single system
- Data analytics across multiple systems
- APIs management and big data systems
- Principles of elasticity for advanced servicebased data analytics

Advanced service-based analytics – which are fundamental engineering questions?

Predictive Maintenance in Telcos

- Complex types of data
- Various services
- Complex analytics/data processing algorithms

Design questions Part = a (composite) services/components

- Which system infrastructures are used?
- Which interfaces/APIs are suitable for services?
- Which programming models are used within services?
- Which non-functional parameters are important and how to measure them?

Fundamental concepts – system infrastructure unit

Fundamental concepts – unit functions

Fundamental concepts – programming model within units

Fundamental concepts – interfaces between services

Fundamental concepts – services and data concerns

You see we need to deal with many techniques and frameworks

WE NEED TO START FROM DATA ANALYTICS WITHIN A SINGLE SYSTEM

What is our understanding about a single system?

Location and enterprise boundary?

Within a virtual infrastructure owned by a single organization?

Data analytics within a single (technical) system

- In a single domain
 - Tightly coupled computing infrastructures
 - E.g., in the same cloud
 - Computation and data are close
 - Several concerns can be by-passed
 - They can be complex

Data analytics within a single system – some examples

A short, good overview in Chapter 6: Cloud Programming and Software Environments, Book: Distributed and Cloud Computing – from Parallel Processing to the Internet of Things, Kai Hwang, Geoffrey C. Fox and Jack J Dongarra, Morgan Kaufmann, 2012

Example - BigQuery (1)

Querying Data

Reference

Using External Data Sources Using Views Updating Data Exporting Data Labeling Datasets **BigQuery Monitoring Using** Stackdriver **BigQuery API Basics BigQuery Web UI** bg Command-Line Tool Migrating to Standard SQL APIs & Reference All APIs & References Client Libraries 👗 REST Reference Data Transfer Service

A

Google BigQuery

▼ Pu

New Query 💿

1 SELECT FROM [bigquery-public-data:hacker_news.stories] LIMIT 1000

Google BigQuery COMPOSE QUERY

Query History

Job History Filter by ID or label mobifonebigquerykpi StationLocation III DaNang KhanhHoa

.

.... . -...

EN

ouncilla	Details Pre	view			
ents id	INTEGER	NULLABLE	Unique story ID		
01510 by	STRING	NULLABLE	Username of submitter		
s	INTEGER	NULLABLE	Story score		
-public-data:noaa_gsod time	INTEGER	NULLABLE	Unix time	Cloud BigQuery Broduct Overview	Installi
public-data:usa_names time_ts	ne_ts TIMESTAMP NULLABLE Human readable time in UTC (format: YYYY-MM-DD h	Documentation			
hathitrustbooks title	STRING	NULLABLE	Story title		C#
a:cdc url	STRING	NULLABLE	Story url	Quickstarts	npm in
een text	STRING	NULLABLE	Story text	Using the Web UI	
flow deleted	BOOLEAN	NULLABLE	Is deleted?	Using the Command-Line Tool	Using t
dead	BOOLEAN	NULLABLE	Is dead?	How-to Guides	Horo's ar
descendants	INTEGER	NULLABLE	Number of story descendants	All How-to Guides	
	STRING		Licomamo of author	Loading Data Into BigQuery	

C#	GO	JAVA	NODE.JS	PHP	PYTHON	RUBY

--save @google-cloud/bigquery

ient library

nple of how to use the client library. To run it on your local workstation you must first install the Google I authenticate by running the following command:

application-default login

For information about authenticating in other environments, see the Google Cloud Platform Auth Guide.

0#	GO	JAVA	NODE.JS	PHP	PYTHON	RUBY		
							VIEW ON GITHUB	FEEDE
// Impo	orts the	Google Clo	ud client lib	rary	<i></i>			
const E	städnei à	- require(@googie-ciou	iu/brgdnei	у),			
// Your	r Google	Cloud Plat	form project	ID				
const p	projectId	= 'YOUR_F	ROJECT_ID':					
const p	projectId	= 'YOUR_F	ROJECT_ID';					
const p // Inst const b	orojectId t <mark>antiates</mark> Digquery	= 'YOUR_F a client = BigQuery	PROJECT_ID';					

From https://cloud.google.com/bigguery/docs/reference/libraries

Example – BigQuery: complexity

Figure 1: BigQuery structural overview

Source https://cloud.google.com/solutions/bigquery-data-warehouse

ASE Summer 2018

Example – BigQuery: complexity

Source: https://cloud.google.com/blog/big-data/2016/01/bigquery-under-the-hood

Example – BigQuery: complexity

Source: https://cloud.google.com/solutions/architecture/optimized-large-scale-analytics-ingestion

But why it might not be suitable for you? When?

🔊 🗐 🔲 truong@bachphu-spark-m: ~

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright. Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law. truong@bachphu-spark-m:~\$ ls aa linh.csv spark-warehouse tt.py truong@bachphu-spark-m:~\$ hadoop fs -ls /user/truong 17/05/18 21:03:20 INFO gcs.GoogleHadoopFileSystemBase: GHFS version: 1.6.0-hadoop2 Found 4 items 0 2017-05-17 14:29 /user/truong/.sparkStaging drwxr-xr-x - truong hadoop - **rw**- **r**- - **r**- -2 truong hadoop 8945 2017-05-12 07:42 /user/truong/aa 0 2017-05-12 07:40 /user/truong/output drwxr-xr-x - truong hadoop -rw-r--r-- 2 truong hadoop 8945 2017-05-12 07:41 /user/truong/part-r-00000-9f88111c-f139-40e5-ac06-53a6e283cd40.csv truong@bachphu-spark-m:~\$ hadoop fs -copyFromLocal aa /user/truong/test.csv 17/05/18 21:04:00 INFO gcs.GoogleHadoopFileSystemBase: GHFS version: 1.6.0-hadoop2 truong@bachphu-spark-m:~\$ Hadoop File Systems

Example – Hadoop: complexity

- Distributing data into multiple nodes/machines is the key! Why?
- Hadoop provides a parallel file system Hadoop File Systems
 - Deal with hardware failures, support data locality, streaming data access
 - Like traditional file systems with new features for big data
- Key principles:

Example – Hadoop: complexity

- Several computers are used to setup
 Resource Manager and Node Manager
- You write the tasks and you submit the tasks

Source: http://hadoop.apache.org/docs/current/hadoopyarn/hadoop-yarn-site/YARN.html

Example – Hadoop: simple

But why it might not be suitable for you? When?

ASE Summer 2018

- With ElasticSearch, MongoDB, Canssandra, etc. within a single system → they can be very large and scalable!
- But when are they not enough? When are they not suitable for us?

- Can be simple or complex
 - E.g., a python program based on scikit-learn or a pySpark program or a workflow
- Can be written in different program languages
- Can be deployed and run "as a service"
 - Clear input & output

Data analytics across multiple systems – data service units

Data analytics across multiple systems – data service units

ASE Summer 2018

Data analytics across multiple systems – data service units

ASE Summer 2018

WHY SHOULD ANALYTICS UNITS BE "CLOSED" TO DATA UNITS?

WHICH CONCERNS COULD BE IGNORED IN SINGLE SYSTEM DATA ANALYTICS?

WHICH ARE THE ISSUES THAT WE NEED TO CONSIDER WHEN OUR DATA UNITS ARE IN DIFFERENT SYSTEMS?

Data analytics across multiple systems – design choice

- Programming models for data analytics service
- Data service units
- Supporting middleware units

Data analytics across multiple systems - example

How many systems? Programming languages? Type of data?

Data analytics across multiple systems – programming models (1)

Data analytics across multiple systems – programming models (2)

Cloud services and big data analytics

Very complex problems due to software complexity, infrastructures management and service providers

- Monitoring equipment and environments
 - Electricity, temperature, air conditioner breakdown, etc.
- Using MQTT and MySQL

- Requirements:
 - Now would like to do big data analytics (for certain type of problems) – offline per day
 - Do not want to manage the big data analytics system
 - Not worry about data privacy/regulation

ASE Summer 2018

What would you recommend for solving the requirements?

Example – Igacy then how to deal with big data analytics

So many types of services from different providers. Anyway to simplify the management of services for the developer/operator?

API MANAGEMENT AND BIG DATA

Ecosystem view for advanced service engineering

- Complex data analytics applications → need to understand potential service units from an ecosystem perspective
 - Interdependent systems: Social computing, mobile computing, cloud computing, data management, etc.
 - Different functions (analytics, visualization, communications, etc.)
 - Too many different types of customers (and their interactions)
 - Blending vertical and horizontal analytics

- APIs are key! Why?
 - Enable access to data and function from entities in your ecosystem
 - Virtualization

- An API is an asset
 - We need to have lifecycle, pricing, management, etc.

Check http://www.apiacademy.co for some useful tutorials

نځ

Source: Web API Design, Brian Mulloy http://apigee.com/about/resources/ebo oks/web-api-design

Sourre: https://en.wikipedia.org/wiki/Facade_pattern

API management & APIs as a service

ASE Summer 2018

Development of APIs

- Not just the functions behind the APIs
 - This we have learned since a long time
- Emerging (business/service) management aspects
 - Usage control and security
 - Any where from any device for any customer
 - Interfaces (communications, inputs/output formats)
 - APIs as a service:
 - Availability and reliability of APIs are important think APIs are similar to a service that your client will consume

Issues on APIs management

- Publish
 - Business and operation planning
 - API usage schemes (e.g., pricing, data concerns)
 - API payload transform policies
 - API throttling
 - API publish and discovery (like service discovery?)
- Management
 - Management roles in enterprises, versions, etc.
- Monitoring and analytics
 - monitoring and analytics information (availability, types of customers, usage frequencies, etc.)

Some well-known frameworks

- http://apigee.com
- Oracle API management: <u>http://www.oracle.com/us/products/middleware/</u> <u>soa/api-management/overview/index.html</u>
- http://wso2.com/api-management/
- http://www.ca.com/us/lpg/layer-7-redirects.aspx
- https://www.mashape.com/
- http://apiaxle.com/

Build your own APIs ecosystem

- Which APIs you need? Which ones are crucial for you to build complex services?
 - Data APIs
 - Data collection, Visualization, Analytics APIs
 - Communication
 - Coordination of tasks
- \rightarrow API management for IoT?

(http://ubiquity.acm.org/article.cfm?id=2822873)

- API marketplaces \rightarrow your APIs
- Using existing API platforms to manage your APIs

Examples of an API marketplace

Use API Management for your mini project?

From https://apigee.com

ASE Summer 2018

What would be the relationship between API management and big data?

Aspects:

- Data access and contract
- New source of data
- Data analytics

Changes in Application, Analytics and data

All are changing internally. Can we keep the API remains and new APIs are added

Example of Architecture Design from Amazon

Figure source: https://aws.amazon.com/answers/big-data/data-lake-solution/

ASE Summer 2018

PRINCIPLES OF ELASTICITY FOR BIG DATA SYSTEMS

Elasticity in (big) data analytics

More data \rightarrow more compute resources (e.g. more VMs)

More types of data \rightarrow more activities \rightarrow more analytics processes

- Change quality of analytics
 - Change quality of data
 - Change response time
 - Change cost
 - Change types of result (form of the data output, e.g. tree, table, story)

ASE Summer 2018

Elasticity in slices of IoT, Network functions and cloud resources

Application example

What should we do if suddenly many sensors send a lot of data?

What if you know that "5 minutes from now, 10*n sensors will be started?

Elasticity in slices of IoT, Network functions and cloud resources

"IoT + Network functions + Clouds"

What if in the "network functions" we can create VMs or perform network traffic engineering?

Elasticity principles can be used to support dynamic quality of analytics

Elasticity Principles: Elasticity of data and analysis processes

- Multiple types of objects from different sources with complex dependencies, relevancies, and quality
- Different data and algorithms models for analyzing the same subject
- New analytics subjects can be defined and analytics goals can be changed
- Decide/select/define/compose not only data but also analysis pipelines based on existing ones

Management and modeling of elasticity of data and processes during the analytics

Elasticity Principles: Elasticity of data resources

- Data provided, managed and shared by different providers
- Data associated with different concerns (cost, quality of data, privacy, contract, etc.
- Static data, open data, data-as-a-service, opportunistic data (from sensors and human sensing)
- Distributed big data and multiple data owners

Data resources can be taken into account in an elastic manner: similar to VMs, based on their quality, relevancy, pricing, etc.

Elasticity Principles: Elasticity of humans and software as computing units

- Human in the loop to solve analytics tasks that software cannot do
- Human-based compute units can be scaled up/down with different cost, availability, and performance models
- Human-based compute units + software-based compute units for executing analysis pipelines
- Elasticity controls can be also done by humans

Provisioning hybrid compute units in an elastic way for computing/data/network tasks as well as for monitoring/control tasks in the analytics process

- Definition of quality of analytics
 - Trade-offs of time, cost, quality of data, forms of output
- Using quality of analytics to select suitable analysis processs, data resources, computing units
- Multi-level control for the elasticity based on quality of analytics

Able to cope with changes in quality of data, performance, cost and types of results at runtime

General software design concept: Lifecycle of applications and elasticity

ASE Summer 2018

- Read mentioned papers
- Analyze the relationships between programming models and system infrastructures for data analytics across multiple domains
- Examine <u>http://cloudcomputingpatterns.org</u> and see how it supports data analytics patterns
- Develop some patterns for data analytics across multiple systems
- Setup an API management platform for your work

Data analytics within a single system

Some papers

- Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden, and Michael Stonebraker. 2009. A comparison of approaches to large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data (SIGMOD '09), Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY, USA, 165-178. DOI=10.1145/1559845.1559865 http://doi.acm.org/10.1145/1559845.1559865
- 2. Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari: S4: Distributed Stream Computing Platform. ICDM Workshops 2010: 170-177
- Jerry Chou, Mark Howison, Brian Austin, Kesheng Wu, Ji Qiang, E. Wes Bethel, Arie Shoshani, Oliver Rübel, Prabhat, and Rob D. Ryne. 2011. Parallel index and query for large scale data analysis. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11). ACM, New York, NY, USA, , Article 30, 11 pages. DOI=10.1145/2063384.2063424 http://doi.acm.org/10.1145/2063384.2063424
- 4. Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, Prashant J. Shenoy: A platform for scalable one-pass analytics using MapReduce. SIGMOD Conference 2011: 985-996
- 5. Fabrizio Marozzo, Domenico Talia, Paolo Trunfio: A Cloud Framework for Parameter Sweeping Data Mining Applications. CloudCom 2011: 367-374
- 6. Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst: HaLoop: Efficient Iterative Data Processing on Large Clusters. PVLDB 3(1): 285-296 (2010)

Thanks for your attention

Hong-Linh Truong Faculty of Informatics, TU Wien hong-linh.truong@tuwien.ac.at www.infosys.tuwien.ac.at/staff/truong @linhsolar