
Distributed Architecture, Interaction, and

Data Models

Hong-Linh Truong

Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

@linhsolar

DST Summer 2017, Lecture 1

DST 2017 2

Ack:

Some slides are based on previous lectures in SS 2013-2015

Outline

 Overview

 Key design concepts

 Architecture styles and Interaction Models

 Data models

 Optimizing interactions

 Summary

DST 2017 3

DST Lectures versus Labs

 Cover some important topics in the current

state-of-the-art of distributed systems

technologies
 We have focusing topics

 Few important parts of the techniques for

your labs
 Most techniques you will learn by yourself

 Stay in the concepts: no specific

implementation or programming languages

DST 2017 4

DST Lectures versus Labs

 It is not about Java or Enterprise Java

Beans!
 The technologies you learn in the lectures are for

different applications/systems

DST 2017 5

Have some programming questions?

DST 2017 6

Or send the questions to the tutors

TRENDS & KEY DESIGN

CONCEPTS

DST 2017 7

DST 2017 8

 On-premise Internet-scale enterprise applications

 Static, small infrastructures large-scale dynamic

infrastructures

 Heavy services microservices

 Server Serverless Architecture

 Data Data, Data and Data

Rapid changes in Application Requirements

and Technologies for Distributed

Applications

Laptop

Server

Server

A not so complex distributed

application

DST 2017 9

Database

(MySQL)

Shopping

Service

Web Browser

Internet

Figure source: https://docs.oracle.com/javaee/7/tutorial/overview003.htm

Technologies Distribution

Figure source:

http://drbacchus.com/files/se

rverrack.jpg

A complex, large-scale distributed

system

DST 2017 10

Figure source: http://uidai.gov.in/images/AadhaarTechnologyArchitecture_March2014.pdf

What we have to do?

selecting the right technologies as well as design

methodology

DST 2017 11

 Data

 Communication

 Processing

 Visualization

 Routing

 Load balancing

 Monitoring & Logging

 Etc.

 Development

 Deployment

 Testing

 Monitoring

 Performance analysis

 Teamwork

System/application business logic Development and operation tasks

Deliver

Understand The Requirements

 Data

 Structured, semi-structured or unstructured data?

 Do we need data being persistent for several years?

 Is accessed concurrently (from different applications)?

 Mostly read or write operations?

 Data intensive or computation intensive application

DST 2017 12

This course is not about big data but distributed applications today have to

handle various types of data at rest and in motion!

Understand The Requirements

 Physically distributed systems

 Different clients and back-ends

 On-premise enterprise or cloud?

 Complex business logics

 Complexity comes from the domain more than from

e.g., the algorithms

 Integration with existing systems

 E.g., need to interface with legacy systems or other

applications

 Scalability and Performance Limitation

 Etc.

DST 2017 13

How do we build distributed

applications
 Using fundamental concepts and technologies

 Abstraction: make complicated things simple

 Layering, Orchestration, and Chorography: put things together

(design)

 Distribution: where and how to deploy

 Using best practice design and performance patterns

 Principles, e.g., Microservices Approach

DST 2017 14

Figure source:Sam Newman, Building

Microservices, 2015

Abstraction

 APIs abstracting complex communications and

interactions

 Interfaces abstracting complex functions

implementation

DST 2017 15

Deal with technical complexity by hiding it behind

(comparatively) nice interfaces

Layering

Deal with maintainability by logically structuring

applications into functionally cohesive blocks

DST 2017 16

Benefits of Layering

 You can understand a single

layer without knowing much

about other layers

 Layers can be substituted with

different implementations

 Minimized dependencies

between layers

 Layers can be reused

Downsides of Layering

 Layers don’t encapsulate all

things well: do not cope with

changes well.

 Extra layers can harm

performance

 Extra layers require

additional development

effort

Examples: Abstraction and

Layering side-by-side

DST 2017 17

Figure source: http://docs.jboss.org/hibernate/orm/5.1/userguide/html_single/Hibernate_User_Guide.html

Partitioning/Splitting functionality

& data

 Why?

 Breakdown the complexity

 Easy to implement, replace, and compose

 Deal with performance, scalability, security,

etc.

 Support teams in DevOps

 Cope with technology changes

DST 2017 18

Enable abstraction and layering/orchestration, and

distribution

Example of Functional and Data

Partionting

DST 2017 19

Figures source: http://queue.acm.org/detail.cfm?id=1971597

Partitioning functionality: 3-

Layered Architecture

 Presentation
 Interaction between user and software

 Domain Logic (Business Logic)
 Logic that is the real point of the system

 Performs calculations based on input and stored data

 Validation of data, e.g., received from presentation

 Data Source
 Communication with other systems, usually mainly

databases, but also messaging systems, transaction

managers, other applications, ...

DST 2017 20

Presentation

Domain Logic

Data Source

Orchestration and Choreography

DST 2017 21

Sensor Data

Analytics

Energy Optimization

Service

Emergency Service

Equipment

Maintenance Service

Sensors Queuing

Near Realtime

Analysis

Historical Data

Archiving
Choreography

Orchestration

Distribution: where to run the

layers?

DST 2017 22

Figure source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

More in lecture 4

Distribution: OS, VM, or Container?

DST 2017 23

Source: Kernel-based Virtual Machine

(http://www.linux-kvm.org/page/Main_Page)

Source: The XEN Hypervisor (http://www.xen.org/)

Distribution: Edge, Network or

Data Centers?

DST 2017 24

Figure source:

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

Programming

25

Source: http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

DST 2017

DST 2017 26

What is the downside of functional

and data partitioning?

ARCHITECTURE STYLES AND

INTERACTION MODELS

DST 2017 27

Process boundary
Process boundary

Basic direct interaction

 Using abstraction, we hide the complexity within these boxes

 But we need to integrate between two components, enabling them

communicate across process boundaries

 In the same host, in the same application in different hosts, in

different applications

 How would they exchange data/commands? e.g., Synchronous

or asynchronous communication

DST 2017 28

Client Server

you
Remoting Objects/Procedures/Services/Servers

Basic interaction models

 Large number of communication protocols and

interfaces

 Interaction styles, protocols and interfaces

 REST, SOAP, RPC, Message Passing, Stream-

oriented Communication, Distributed Object models,

Component-based Models

 Your own protocols

 Other criteria

 Architectural constraints

 Scalability, Performance, Adaptability, Monitoring,

Logging, etc.

DST 2017 29

Remote Procedure Call Systems

DST 2017 30

 Server provides procedures that clients can call

 Most RPC-style middleware follows a small set of architectural

principles

 Strongly tied to specific platforms

 Understanding those principles will help you understand how / why

your RPC middleware of choice works

Example of State-of-the-art Tool

DST 2017 31

http://www.grpc.io/

Message Passing

DST 2017 32

Sender Receiver
Send Message Receive Message

Receive Reply
Send Reply

More in lecture 2 (fundamental) and lecture 5 (large-scale)

 Servers and clients communicate by exchanging messages

m3 m2 m1 m3 m2 m1

time

client

Streaming

data

server

When the

transmission

of m2

completes

End-to-end delay

Stream-oriented communication
When delivery times matter!

Distributed Object Systems

DST 2017 33

 Natural progression for object-oriented programming languages

 Fits naturally into object-oriented programs

 Imperative language RPC

 OO language distributed objects

 Server provides objects (data + methods) that clients can interact

with

Component Based Systems

DST 2017 34

 Components:

 Reusable collections of objects

 Clearly defined interfaces

 Focus on reuse and integration

 Implementations: Enterprise Java Beans, OSGi,

System.ComponentModel in .NET

Service-Oriented Systems

DST 2017 35

 Service-oriented Computing:

 Applications are built by composing (sticking

together) services (lego principle)

 Services are supposed to be:

Standardized,

Replaceable,

Context-free (and hence reusable),

Stateless

Components vs. Services

DST 2017 36

Components

 Tight coupling

 Client requires library

 Client / Server

 Extendable

 Fast

 Small to medium

granularity

 Buying components

and installing them on

your HW

Services

 Loose coupling

 Message exchanges

 Policy

 Peer-to-peer

 Composable

 Some overhead

 Medium to coarse

granularity

 Pay-per-use remote

services

REST

 REST: REpresentational State Transfer

 Is an architectural style! (not an implementation
or specification)

 See Richardson Maturity Model
(http://martinfowler.com/articles/richardsonMaturityM
odel.html)

 Can be implemented using standards (e.g., HTTP,
URI, XML)

 Architectural Constraints:
 Client-Server, Stateless, Cacheable, Layered

System, Uniform Interface

DST 2017 37

Example of REST Interactions

 Important concepts
 Resources

 Identification of Resources

 Manipulation of resources through their representation

 Self-descriptive messages

 Hypermedia as the engine of application state (aka. HATEOAS)

DST 2017 38

GET (list/retrieve)

PUT (update/create)

POST (create/update)

DELETE (remove)

Web Service

URIi: Resourcei

Web

Service

Client

URIk: Resourcek

Complex interactions

 One-to-many, Many-to-one, Many-to-One

 Message Passping Interface

 Public/Subscribe, Message-oriented Middleware

 Shared Repository

 Application/Systems specific models

DST 2017 39

Client Client Client Client

Repository

add

retrieve delete
listen

notify

Producer

Consumer

Consumer

Consumer

M
W

Amazon S3

Serverless

 Most of the time we need to build and setup

various services/server

 But with the cloud and PaaS providers we do

not have to do this

 Serverless computing:

 Function as a service

 Examples
 AWS Lambda

 Google Cloud Function (beta - https://cloud.google.com/functions/)

 IBM OpenWhisk

 https://serverless.com/

DST 2017 40

Serverless

 Key principles

 Running code without your own

back-end server/application

server systems

 Tasks in your application:

described as functions

 With a lifecycle

 Functions are uploaded to

FaaS and will be executed

based on different triggers

(e.g., direct call or events)

DST 2017 41

Check: https://martinfowler.com/articles/serverless.html

Source: http://docs.aws.amazon.com/lambda/latest/dg/with-s3-

example.html

DST 2017 42

Depending on the requirements: we can build

everything or build few things and manage the

whole system or not.

 We need to carefully study and examine

suitable technologies/architectures for our

distributed applications

A big homework:

Microservices approach versus serverless approach

DATA MODELS

DST 2017 43

Data Storage Models

DST 2017 44

 Relational Model

 Traditional SQL model

 Key-Value Model

 Data is stored as simple list of keys and values (hashtable

style)

 Column-oriented Model

 Data is stored in tables, but stored column-wise rather than

row-wise

 Document-oriented Model

 Data is stored in (schemaless) documents

 Graph-oriented Model

 Data is stored as an interconnected graph

NoSQL is everything

but SQL

Relational Model

DST 2017 45

 Set-theory based systems

 Implemented as collection of two-dimensional tables

with rows and columns

 Powerful querying & strong consistency support

 Strict schema requirements

 E.g.: Oracle Database, MySQL Server, PostgreSQL

Key-Value Model

DST 2017 46

 Basically an implementation of a map in a programming

language

 Values do not need to have the same structure (there is

no schema associated with values)

 Primary use case: caching

 Simple, very efficient, as usually no consistency is

ensured

 Querying capabilities usually very limited

Oftentimes only “By Id” pattern

 E.g.:

 Memcached, Riak, Redis

Collection

Document-oriented Model

DST 2017 47

 Simple, comparable to key-value

 All values are schema-free and typically complex

 Primary use cases: managing large amounts of unstructured

or semi-structured data

 Sharding and distributed storage is usually well-supported

 Schema-freeness means that querying is often awkward

and/or inefficient

 E.g.:, CouchDB, MongoDB

Data Object JSON Document

Document

Document
A simple analogy

Example: MongoDB with mLab.org

DST 2017 48

Column-oriented data model

 Data Model

 Table consists of rows

 Row consists of a key and one or more columns

 Columns are grouped into column families

 A column family: a set of columns and their values

 Systems: Hbase, Hypertable, Cassandra

DST 2017 49

Rows are allowed to have different columns

Examples: HBase

DST 2017 50

Source: http://hbase.apache.org/book.html#datamodel

Graph-oriented Model

DST 2017 51

 Elevates data relationships to first-class citizens

 Data is stored as a network (graph)

 Primary use cases: whenever one is more interested in

the relations between data than the data itself (for

instance, social media analysis

 Highly connected and self-referential data is easier to map to a

graph database than to the relational model

 Relationship queries can be executed blazingly fast

 Notoriously hard to understand for people coming from

traditional data storage models

 E.g.: Neo4J

Examples wih Neo4j

DST 2017 52

Which ones are the best?

Check: http://kkovacs.eu/cassandra-vs-mongodb-

vs-couchdb-vs-redis

DST 2017 53

Key issues: we need to use many

types of databases/data models

Example - Healthcare
 Personal or hospital context

 Very different types of data for healthcare

 Electronic Health Records (EHRs)

 Remote patient monitoring data (connected

care/telemedicine)

 Personal health-related activities data

 Combined with other types of data for insurance

business models

DST 2017 54

Accessing and Processing Data

 Component accesses data

 Get, store, and process

 Data is in relational model, documents,

graph, etc.

 Main problems

 Programming languages are different

Mapping data into objects in programming

languages

 Distributed and scalable processing of data

(not in the focus of this lecture)

DST 2017 55

Data Access API Approach

 Data access APIs can be built based on well-defined

interfaces

 Currently mostly based on REST

 Help to bring the data object close to the programming

language objects

DST 2017 56

Relational

Database

(e.g. MySQL)

REST APIREST API

Object-based

storage

(e.g. S3)

Document-

based

Database

Relational

Database

Service API Tool-specific API

SQL-based API

 Leverage SQL as the language for accessing

data

 Hide the underlying specific technologies

DST 2017 57

Source: Programming Hive, Edward Capriolo, Dean Wampler, and Jason

Rutherglen

Object-Relational/Grid Data

Mapping (ORM/OGM)

Conceptual mismatch, especially with relational

database

DST 2017 58

Programming

Language

Objects Native Database Structure

(e.g., relations)

What you want to avoid

DST 2017 59

public class JDBCExample extends HttpServlet {

public void doGet(... request, ... response) throws ... {

ps = conn.prepareStatement("UPDATE table set ColumnX =
?;");

ps.setInt(1,
Integer.parseInt(request.getParameter("param1")));

ps.executeUpdate();

...

ResultSet rs = stmt.executeQuery("SELECT x, y, z FROM
table;");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.write("<html><head /><body>\n")

while (rs.next()) {

out.println(rs.getString("x") + "
\n");

}

out.write("</body></html>");

}

...

Solution (1)

Two subproblems:

1. How do represent data in the application?

2. How to map between data storage and

application?

DST 2017 60

Build an abstraction layer that represents the database in

the application

Solution (2)

 Technologies

 Java Persistence API

 Hibernate ORM (relational database)

 Hibernate OGM (NoSQL)

 Mongoose (for MongoDB)

 Methodology: design patterns

 http://martinfowler.com/eaaCatalog/index.html

DST 2017 61

Data-Related Architectural Patterns

 See http://martinfowler.com/eaaCatalog/index.html

 Mapping DB Data to Code

 Code that wraps the actual communication between

business logics and data store

 Required to „fill“ e.g., the domain model

 Goals

 Access data using mechanisms that fit in with the

application development language

 Separate data store access from domain logic and

place it in separate classes
DST 2017 62

Data Source Architectural Patterns

Row Data Gateway

Based on table structure. One instance per row returned by a

query.

Table Data Gateway

Based on table structure. One instance per table.

Active Record

Wraps a database row, encapsulates database access code,

and adds business logic to that data.

Data Mapper

Handles loading and storing between database and Domain

Model.

DST 2017 63

Object-Relational Structural

Patterns

DST 2017 64

Association Table Mapping

Class Table Inheritance

Source: http://martinfowler.com/eaaCatalog/classTableInheritance.html

Source: http://martinfowler.com/eaaCatalog/associationTableMapping.html

Solutions/Strategies: http://docs.oracle.com/javaee/6/tutorial/doc/bnbqn.html#bnbqr

http://www.javaworld.com/article/2077819/java-se/understanding-jpa-part-2-relationships-the-jpa-way.html

http://docs.oracle.com/javaee/6/tutorial/doc/bnbqn.html#bnbqr

Object-Relational Behavioral

Patterns: Lazy Loading

An object that doesn't contain all of the data you
need but knows how to get it .

DST 2017 65

Lazy Loading

 For loading an object from a database it's

handy to also load the objects that are related

to it

 Developer does not have to explicitly load all objects

 Problem

 Loading one object can have the effect of loading a

huge number of related objects

 Lazy loading interrupts loading process and

loads data transparently when needed

DST 2017 66

Lazy Loading Implementation

Patterns

 Lazy Initialization

 Every access to the field checks first to see if it's null

 Value Holder

 Lazy-loaded objects are wrapped by a specific value

holder object

 Virtual Proxy

 An object that looks like the real value, but which

loads the data only when requested

 Ghost

 Real object, but in partial state

 Remaining data loaded on first access

DST 2017 67

Lazy Loading Example - Hibernate

@Entity

public class Product {

@OneToMany(mappedBy="product“, fetch = FetchType.LAZY)

//or FetchType.EAGER for edger loading

public Set<Contract> getContracts() {

...

}

}

DST 2017 68

How can we achieve the implementation?: using proxy

technique (Lesson 3)

OPTIMIZING INTERACTIONS

DST 2017 69

Interactions?

DST 2017 70

Client Service

Object Remote

Object

Application Remote

Function

Dependencies

Object

Service

Object

Object

Object

Service

Optimizing Interactions

 Interactions between software components and

within them

 Scale in: increasing server capability

 Load balancer

 Scale out

 Asynchronous communication

 More in lectures 4&5

 Data sharding

 Connection Pools

 Etc.

DST 2017 71

Scale out

DST 2017 72

Figure source: http://queue.acm.org/detail.cfm?id=2560948

More in Lecture 4

Load balancing

DST 2017 73

Figure source: http://queue.acm.org/detail.cfm?id=1971597

Data Sharding

DST 2017 74

Soure: https://docs.mongodb.org/manual/core/sharding-introduction/

Need also

Routing, Metadata

Service, etc.

Prevent too many accesses?

DST 2017 75

Client Service
API Management

Service

Code: http://www.django-rest-

framework.org/api-

guide/throttling/#how-throttling-is-

determined

Client Service
100000 requests/s

Pattern: Requestor

 Primary use:

 Perform any action that is required to access the remote object

(towards the client)

 Client should focus on business logic

 Remains independent of the object’s implementation

 Informs client about remoting errors

 Single instance or one per server, etc.

 Is supplied with:

 Absolute object reference, Operation name, Arguments

 E.g., invoke(“locationProcessB”, “Object2”, “operationY”,

arguments{“x”, “y”, “z”})

 Little support for type safety

DST 2017 76

Pattern: Requestor

DST 2017 77

Process A Remote Process B

M
a
c
h
in

e

B
o
u
n
d
a
ry

Client

Requestor
Object 1

Object 2

1) invoke(locationProcessB,

“Object1”, “operationX”,

arguments)

3) invoke(locationProcessB,

“Object2”, “operationY”,

arguments)

2) operationX()

4) operationY()

Pattern: Client Proxy

 Client Proxy

 Sits between Client and Requestor (client now only

accesses Proxy)

 Same interface as the remote object

Typically generated from remote object Interface

Description

 May be dynamically generated (loading, linking,

runtime)

 See Lecture 4

 Translates all local invocations into calls to the

requestor

DST 2017 78

Pattern: Client Proxy

DST 2017 79

Process A Remote Process B

M
a
c
h
in

e

B
o
u
n
d
a
ry

Client

Object 1

Requestor

2) invoke(locationProcessB,

“Object1”, “operationX”,

arguments)
3) operationX()

Client Proxy

1) operationX()

Pattern: Invoker

 Goal

 Remote object implemented independent of communication

(no network listening, unmarshalling, etc.)

 Client should only identify object, server should take care of

dispatching and invoking

 Remote object might not be available all the time

 Invoker

 Identifies object and Invokes object

Static Dispatch (aka server stubs/skeletons): part of the invoker, for

each object type faster

Dynamic Dispatch: dynamically invoke object (e.g., reflection) more

flexible, but not type-safe

DST 2017 80

Pattern: Invoker

DST 2017 81

Process A1 Remote Process B

M
a

c
h
in

e

B
o
u
n
d
a
ry

Client

Requestor

Object

Client Proxy

Process A2

Client

Requestor

Invoker

Invoker

Object

Object

Object

Client Request Handler

 Client Proxies provide remote object access abstraction

 Requestors provide invocation construction

 Not suitable for:

 Connection management, server availability

 Threading

 Time outs, retrying

 Result dispatching

 Optimizing network access (e.g., connection keep alive, caching)

 put network centric aspects into the Client Request Handler

 Scalability through multiplexing

 Plug-in for different transport protocols

 Additional complexity/indirection, for high performance integrate

with Requestor

DST 2017 82

Pattern: Client/Server Request

Handler

DST 2017 83

Process A Remote Process B

M
a
c
h
in

e

B
o
u
n
d
a
ry

Client Request
Handler

Requestor Invoker

Server Request
Handler

Requestor
Requestor

Invoker
Invoker

thread pool

conn cache OS APIs

thread pool

conn cache OS APIs

Lifecycle Control

DST 2017 84

 In distributed object systems, the lifecycle of remote object

instances is not well-defined

 Users may want to explicitly control the lifecycle of instances

 Patterns:

 Static instances

 Per-request instances

 Client-dependent instances

 Lazy Acquisition

 Pooling

 Leasing

 Passivation

Static Instance

DST 2017 85

 Remote object instances exist independently of any clients or

invocations

 Use it when

 Need to Optimize runtime behavior

 Predictable access time

 Acquired resources for server lifetime not an issue

Server Process
M

a
c
h
in

e

B
o
u
n
d
a
ry

Process B

Client

Object

Server
Application

n-1) shutdown

n) destroy
1) create

3) invoke

Process A

Client 2) invoke

DST 2017 86

Continue your home work here with the

following patterns

Per-request instances

DST 2017 87

 Every request / interaction / transaction is executed on a fresh

instance

 Use when

 no object state maintaining required (access state elsewhere,

concurrency issues for shared state)

 individual requests independent

Server Process

M
a
c
h
in

e

B
o
u
n
d
a
ry

Process B

Client

Servant
for Obj X

Server
Application

3) Invoke

on Obj X

Process A

Client 2) Invoke

on Obj X Invoker

1) create Servant
for Obj X

2a) create

2b) invoke

2c) destroy

3a) create

3b) invoke

3c) destroy

Client-dependent Instance

DST 2017 88

 If no instance for a client exists, it is created on first request

 not necessarily any client process can have only 1 instance

 Use when

 Object logic extends client logic, common state

 State-transfer very expensive

Server Process

Process B

Client

Object

Server
Application

5a) new

Instance

Process A

Client 2a) new

Instance Remote
Factory

1) create
Object

2b) create

5b) create

3) invoke 4) invoke

6) invoke

Lazy Acquisition

DST 2017 89

 Static instances may decrease performance, so:

 Only register object (available to clients)

 Instantiate object upon first access

 Avoid allocating resources without use and Improved start-up time

Server Process

M
a

c
h
in

e

B
o
u
n
d
a
ry

Servant
for Obj X

Server
Application

Process A

Client 3) Invoke

on Obj X Invoker

1) create

4) create

5) invoke

2) register Object “X”

Pooling

DST 2017 90

 Don’t create servants for each request (memory, registering, init,

destruction, resource release …)

 Requests are handled by an arbitrary instance from a pool typically

resized dynamically

 Servants stripped of state upon returning to pool, initialized with

object upon taking from pool best for stateless objects

Server Process

M
a
c
h
in

e

B
o
u
n
d
a
ry

Servant
for X

Server
Application

Process A

Client 3) Invoke

on Obj X Invoker

1) create

6) invoke

3) register pooled instance “X”

Object
Pool “X”

Servant
for XServant

for XServant
for X

2) create

7) put servant back

5) get idle servant

Leasing

DST 2017 91

 Per-client instances may remain “left over” from clients that are not

actually there anymore (crashed / forgot to release)

 Occasionally, the middleware needs to remove unused per-client

instances

 To prevent this, clients (Client Proxy) can periodically renew their

lease on the per-client instance

Server Process Object “X”

Lifecycle
Manager

Process A

Client
4) Invoke

on Obj X Invoker

3) create lease

1) Create X

4) renew lease

5) invoke

2) create

After lease expired:

6) destroy

Passivation

DST 2017 92

 Per-client instances might exist for a long time without actually being used

– take up server resources such as memory

 During this times, objects are typically removed from memory (and e.g.,

persisted to a database) – resources released

 When the next request comes in, the object is activated (defrosted) –

resources re-acquired

 Expensive operation minimize use

Server Process Servant
for “X”

Lifecycle
Manager

Process A

Client

1a,4)

Invoke on

Obj X
Invoker

5) activate (objId)

1b,8) invoke

7a) create

7b) activate

After timeout

2a) passivate

2b) destroy

3) storeState (objId)

6) getState (objId)

Fire and Forget

DST 2017 93

 Client invokes remote code and continues immediately

 Best effort semantics: Client receives neither answer, nor faults, nor

delivery confirmation

 Only useful if the client does not particularly care about the request

being successful (e.g., logging, new data overrides old data)

Process A Process B

M
a

c
h
in

e

B
o
u
n
d
a
ry

Client

Requestor Invoker

1) invoke
2b) send

2a) return

Sync with Server

DST 2017 94

 Use when: neither afford the risk of incomplete transmission, nor

wait for processing to complete

 Client invokes remote code and waits for delivery confirmation from

server before continuing

 This confirmation only guarantees that the request has arrived at

the server, not that it will not lead to a fault

Process A Process B

Client

Requestor Invoker

1) invoke

2) send

3b) return

Object
3a) reply

3c) invoke

Poll Object (or Future)

DST 2017

 Client invokes remote code and receives a stub for the result

 Client can continue executing and check, in a asynchronous or

blocking mode, its poll object for the invocation result in due time

 Use when

 Not absolutely necessary to continue immediately after result available

 Remote execution time expected to be short

Process A Process B

Client

Requestor Invoker
1) invoke

2) invoke

3) isAvailable = false

Poll Object

6) getResult

4) storeResult

5) isAvailable = false

95

Callback

DST 2017 96

 Client invokes remote code and use a callback object which will be

called with the result, once it is available

 Note that technically the only difference between poll object and

callback is who creates the callback object

 Client creates object callback

 Server creates object poll object

Process A Process B

Client

Requestor Invoker
2) invoke

3) invoke

Callback
Object

4) finished(result)

1) create
6) …

Summary

 Understand the size and complexity of your distributed

applications/systems

 Pickup the right approach based on requirements and

best practices

 Architecture, interaction, and data models are strongly

inter-dependent

 There are a lot of useful design patterns

 Distribution design and deployment techniques are

crucial cloud models

 Embrace diversity: Not just distributed applications with

relational database!

DST 2017 97

Other references

DST 2017 98

 Sam Newman, Building Microservices, 2015

 http://de.slideshare.net/spnewman/principles-of-microservices-ndc-2014

 Markus Völter, Michael Kirchner, Uwe Zdun: Remoting Patterns – Foundation of Enterprise, Internet and

Realtime Distributed Object Middleware, Wiley Series in Software Design Patterns, 2004

 Thomas Erl: Service-Oriented Architecture – Concepts, Technology and Design, Prentice Hall, 2005

 Roy Fielding’s PhD thesis on REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 Roy Fielding’s blog entry on REST requirements: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-

hypertext-driven

 Martin Fowler’s blog entry on RMM: http://martinfowler.com/articles/richardsonMaturityModel.html

 Martin Fowler: Patterns of Enterprise Application Architecture

 Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: a distributed storage system for structured data.

In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation - Volume 7

(OSDI '06), Vol. 7. USENIX Association, Berkeley, CA, USA, 15-15

 Eric Redmond, Jim R. Wilson: Seven Databases in Seven Weeks – A Guide to Modern Databases and the

NoSQL Movement

 Polyglott persistence: http://martinfowler.com/bliki/PolyglotPersistence.html

 CAP: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

 Eventual consistency: http://queue.acm.org/detail.cfm?id=1466448

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/bliki/PolyglotPersistence.html

99

Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group

TU Wien

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

@linhsolar

DST 2017

http://dsg.tuwien.ac.at/staff/truong

