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What this lecture is about?

 Large-scale data analytics

 Advanced messaging   

 Apache Kafka 

 Advanced data analytics with streaming data 

processing

 Stream processing with Apache Apex

 Advanced data analytics with workflows

 Data pipeline with Airflow/Beam
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Large-scale data analytics

 Analytics-as-a-service

 Understand monitoring information, logs, user activities, 

etc. 

 Provide insightful information for optimizing business

 Big data analytics

 Handle and process big data at rest and in motion

 Key issues

 Collect/produce messages from  distributed application components 

and large-scale monitoring systems

 Need scalable and reliable large-scale messaging broker systems

 Require workflow and stream data processing capabilities

 Integrate with various different types of services and data sources
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Example from Lecture 4
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Message 

Queue 

(MQTT/AMQP)

Ingest 

Client

NoSQL 

database

/Storage

…

Ingest 

Client

Ingest 

Client

IoT device

IoT device

IoT device

….

IoT device

IoT device

IoT device

• Should I use docker? VMs? 

• Where elasticity can be applied?

• Topic/data distribution to ingest clients?

• Multiple topics

• Amount of data per topic varies

• Should not have duplicate data 

in database



Implementation atop Google cloud
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Source: https://cloud.google.com/solutions/architecture/streamprocessing



Example: monitoring and security
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Security-related information 

and metrics from distributed 

customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html



Cloud services and big data  analytics

Data sources

(sensors, files, database, 

queues, log services)

Messaging systems

(e.g., Kafka, AMQP, 

MQTT)

Storage and Database

(S3, InfluxDB, HDFS, Cassandra, 

MongoDB, Elastic Search etc.)
Batch data processing 

systems

(e.g., Hadoop, Airflow, Spark)

Stream processing 

systems

(e.g. Apex, Storm, Flink, 

WSO2, Google Dataflow)

Elastic Cloud Infrastructures 

(VMs, dockers, OpenStack elastic resource management tools, storage)

Warehouse 

Analytics

Operation/Management/

Business Services

DST  2017 7



Recall: Message-oriented 

Middleware (MOM)

 Well-supported in large-scale systems for

 Persistent and asynchronous messages

 Scalable message handling

 Message communication and transformation

 publish/subscribe, routing, extraction, enrichment 

 Several implementations
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Apache Qpid™
Amazon SQS

JMS

Apache Kafka



Recall: Workflow of Web services

 You learn it from the Advanced Internet 

Computing course

 Typically for composing Web services from 

different enterprises/departments for different 

tasks

 For big data analytics and Analytics-as-a-

Service

 Tasks are not just from Web services
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APACHE KAFKA

http://kafka.apache.org/ , originally from LinkedIn
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http://kafka.apache.org/


Some use cases

 Producers generate a lot of realtime events

 Producers and consumers have different 

processing speeds

 E.g. activity logging
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Message queue

m3 m2 m1Producer 

(100x)

Consumer 

(10x)

 Rich and diverse types of events

 E.g. cloud-based logging

 Dealing with cases when consumers might be 

on and off (fault tolerance support)

Which techniques 

can be used to 

control this?



Kafka cluster

Kafka Design
 Use cluster of brokers to 

deliver messages

 A topic consists of 

different partitions

 Durable messages, 

ordered delivery via 

partitions

 Online/offline consumers

 Using filesystem heavily

for message storage and 

caching
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producer

Broker

Broker

Broker

Broker

Consumer

Partition m m3 m2 m1

… … …

s3 s2 s1Partition s

Topic



Messages, Topics and Partitions

 Ordered, immutable sequence of messages

 Messages are kept in a period of time (regardless of 

consumers or not)

 Support total order for messages within a partition

 Partitions are distributed among server
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Source: http://kafka.apache.org/documentation.html



Consumers

 Consumer pulls the data

 The consumer keeps a single pointer indicating 

the position in a partition to keep track the offset 

of the next message being consumed

 Why? 

 allow customers to design their speed

 support/optimize batching data

 easy to implement total order over message

 easy to implement reliable message/fault tolerance
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Example of a Producer
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Example of a consumer
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Scalability and Fault Tolerance

DST  2017 17

 Partitions are distributed 

and replicated among 

broker servers

 Consumers are 

organized

into groups

 Each message is 

delivered

to a consumer instance 

in a group

 One partition is assigned 

to one consumer

http://kafka.apache.org/documentation.html#majordesignelements



Partitions and partition replication

 Why partitions?

 Support scalability

 enable arbitrary data types and sizes for a 

topic

 enable parallelism in producing and 

consuming data

 But partitions are replicated, why?

 For fault tolerance
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Partition Replication

The leader handles all read and write requests
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Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013



Consumer Group

 Consumer Group: a set of consumers

 is used to support scalability and fault tolerance

 allows multiple consumers to read a topic

 In one group: each partition is consumed by only 

consumer instance 

 Combine „queuing“ and „publish/subscribe“ model

 Enable different applications receive data from the 

same topic.

 different consumers in different groups can retrieve 

the same data
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Group rebalancing
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Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html



Key Questions/Thoughts

 Why do we need partitions per topic?

 arbitrary data handling, ordering guarantees, 

load balancing

 How to deal with high volume of realtime

events for online and offline consumers?

 partition, cluster, message storage, batch 

retrieval, etc.

 Queuing or publish-subscribe model?

 check how Kafka delivers messages to 

consumer instances/groups 
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STREAMING DATA 

PROCESSING
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Batch, Stream and Interactive 

Analytics

Source: https://dzone.com/refcardz/apache-spark
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Recall: Centralized versus distributed 

processing topology

Complex Event Processing

(centralized processing)

Streaming Data Processing

(distributed processing)

Proces

sing

Usually only 

queries/patterns are written 
Code processing events and 

topologies  need to be 

written

Event cloud

Event source

Proces

sing

Proce

ssing Proces

sing

node

node

node

node

node node

Two views: streams of events or cloud of events
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Topology of operators

Structure of streaming data 

processing programs

 Data source operator: represents a source of streams

 Compute operators:  represents processing functions

 Native versus micro-batching
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External source

Data source 

Operator

Compute 

Operator

Compute 

Operator

Output/Sink 

Operator

Data source 

Operator



Key concepts

 Structure of the data processing

 Topology: Directed Acycle Graph (DAG) of operators

 Data input/output operators and compute operators

 Accepted various data sources through different 

connectors 

 Scheduling and execution environments

 Distributed tasks on multiple machines

 Each machine can run multiple tasks

 Stream: connects an output port from an operator to an 

input port to another operator

 Stream data is sliced into windows of data for compute 

operators
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Implementations

 Many implementation, e.g.

 Apache Storm

 https://storm.apache.org/

 Apache Spark 

 https://spark.apache.org/

 Apache Apex

 https://apex.apache.org/
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Check: 

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-2



Apache Apex – Data Streams
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Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can 

be  data  described by a primitive data type or by a 

complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements 

(tuples)

 Data stream is the key abstraction



Example of an application in Java
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Apex - Operators

 Streaming applications are built with a set of 

operators: for data and computation
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Source: https://apex.apache.org/docs/malhar/

 Some common 

data operators 

(related to other 

lectures)

 MQTT

 AMQP

 Kafka



Apex Operators

 Ports: for input and output data

 Data in a stream: streaming windows
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Source: https://apex.apache.org/docs/apex-3.6/operator_development/



Processing data in operators 
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Different types of Windows: GlobalWindows, TimeWindows, 

SlidingTimeWindows, etc.

Source: https://apex.apache.org/docs/apex/operator_development/



Operators Fault tolerance

 Checkpoint of operators: save state of 

operators (e.g. into HDFS)

 @Stateless no checkpoint

 Check point interval: 

CHECKPOINT_WINDOW_COUNT

 Recovery

 At least once

 At most once 

 Exactly once
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Fault tolerance - Recovery

 At least once

 Downstream operators are restarted

 Upstream operators are replayed

 At most once

 Assume that data can be lost: restart the operator 

and subscribe to new data from upstream

 Exactly once

 https://www.datatorrent.com/blog/end-to-end-exactly-

once-with-apache-apex/
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Node

Container

Execution Management
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STRAM

Node

NodeNode

op op

op op

op

 Using YARN for execution tasks

 Using HDFS for persistent state



Understand YARN/Hadoop to 

understand Apex operator execution  

management
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Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html



Scalability

 Locality configuration  for deployment of 

streams and operators

 Affinity and anti-affinity rules

 Possible localities:

 THREAD_LOCAL (intra-thread)

 CONTAINER_LOCAL (intra-process)

 NODE_LOCAL (inter-process but within a Hadoop 

node)

 RACK_LOCAL (inter-node) 
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Example of Partitioning and 

unification
 Dynamic Partition

 Partition operators

 Dynamic: specifying 

when a partition should 

be done

 Unifiers for combining 

results (reduce)

 StreamCodec

 For deciding which 

tuples go to which 

partitions

 Using hashcode and 

masking mechanism
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Source: 

https://apex.apache.org/docs/apex/application_development/#partitioning



Exercise

How to make sure no duplication results when we 

recover End-to-End Exactly Once?

How to use hash and masking mechanism to 

distributed tuples?

How to deal with data between operators not in a 

CONTAINER_LOCAL or in THREAD_LOCAL
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ADVANCED 

WORKFLOWS/DATA PIPELINE 

PROCESSING
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Use cases

 Access and coordinate many different compute 

services, data sources, deployment services, 

etc,  within an enterprise, for a particular goal

 Implementing complex „business logics“ of your 

services

 Analytics-as a service:  metrics, user activities 

analytics,  testing, e.g.

 Analytics of log files (generated by Aspects in 

Lecture 3)

 Dynamic analytics of business activities

DST  2017 42



Workflow and Pipeline/data 

workflow

 Workflows: a set of coordinated activities

 Generic workflows of different categories of tasks

 Data workflows  data pipeline

„a pipeline is a set of data processing elements connected in 

series, where the output of one element is the input of the next 

one”

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

 We use a pipeline/data workflows to carry out a 

data processing job

 But analytics have many more than just data 

processing activities.
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https://en.wikipedia.org/wiki/Pipeline_(computing)


Example of Pipeline in Google 

Dataflow
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https://cloud.google.com/dataflow/model/pipelines#a-simple-example-pipeline



Data analytics workflow execution 

models
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Data analytics 

workflows Execution Engine

Local Scheduler

job job job job

Web 

serviceWeb 

serviceWeb 

service
Web 

service

Data sources
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Your are in a situation:

 Many underlying distributed processing 

frameworks

 Apex, Spark, Flink, Google

 Work with different underlying engines

 Write only high-level pipelines

 Stick to your favour programming languages



Apache Beam

 Goal: separate from pipelines from backend 

engines
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Read data 

analytics 

Post-processing 

result
Store analysis 

result



Appache Beam

 https://beam.apache.org/

 Suitable for data analysis processes that can be 

divided into different independent tasks

 ETL (Extract, Transform and Load) 

 Data Integration

 Execution principles:

 Mapping tasks in the pipeline to concrete tasks that 

are supported by the selected back-end engine

 Coordinating task execution like workflows.
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Basic programming constructs

 Pipeline: 

 For creating a pipeline

 PCollection

 Represent a distributed dataset

 Transform

[Output PCollection] = [Input PCollection] | [Transform]

 Possible transforms: ParDo, GroupByKey, Combine, 

etc. 
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A simple example with Google 

Dataflow as back-end engine
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But what if you need  diverse types of 

tasks with various back-end 

services?

 Workflow systems



Example of using workflows

DST  2017 52

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Security-related information 

and metrics from distributed 

customers



Representing and programming

workflows/data workflows

 Programming languages

 General- and specific-purpose programming 
languages, such as Java, Python, Swift

 Descriptive languages

 BPEL and several languages designed for 
specific workflow engines
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Airflow from Airbnb

 http://airbnb.io/projects/airflow/

 Features

 Dynamic, extensible, scalable workflows

 Programmable language based workflows

 Write workflows as programmable code

 Good and easy to study to understand concepts 

of workflows/data pipeline
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http://airbnb.io/projects/airflow/


Airflow Workflow structure

 Workflow is a DAG (Direct Acyclic Graph)

 A workflow consists of a set of activities 

represented in a DAG

 Workflow and activities are programed using 

Python – described in code

 Workflow activities are described by Airflow 

operator objects

 Tasks are created when instantiating operator 

objects 
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Airflow from Airbnb

 Rich set of operators

 So that we can program different kinds of tasks and 

integrate with different systems

 Different Types of  operators for workflow activities

 BashOperator, PythonOperator, EmailOperator,  

HTTPOperator, SqlOperator, Sensor, 

 DockerOperator, HiveOperator, 

S3FileTransferOperator, PrestoToMysqlOperator, 

SlackOperator
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Example for processing signal file
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Example for processing signal file
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Example
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Elasticity control for 

Workflows/Data Flows

 How to scale the workflows?

 Scheduling in a large resource pool (e.g., using 

clusters)

 Elasticity controls of virtualized resources 

(VMs/containers) for executing tasks

 Distributed Task Queue, e.g. Celery 
http://docs.celeryproject.org/en/latest/getting-

started/brokers/index.html

Job description/request sent via queues

Results from jobs can be stored in some back-end
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http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html


Other systems, e.g., AWS Data 

Pipeline
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http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide



Summary

 Analytics-as-a-service for large-scale distributed 

applications and big data analytics require different set 

of tools

 Kafka, Apache Apex and Airflow are just some of the 

key frameworks

 There are a lot of tools 

 Need to understand common concepts and 

distinguishable features

 Select them based on your use cases and application 

functionality and performance requirements

 Exercises: 

 a small application utilizing Kafka/MQTT and Apache Apex

 Log analytics using AOP and Kafka and Airflow
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Further materials

 http://kafka.apache.org

 http://www.corejavaguru.com/bigdata/storm/stream-groupings 

 https://cloud.google.com/dataflow/docs/

 http://storm.apache.org/

 https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-

documentdb/
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https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/


STREAMING ANALYSIS WITH

APACHE STORM

https://storm.apache.org/
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Apache Storm – Key concepts

 Originally from Twitter

 Data

 Structure of the data processing

 Topology

 Spouts

 Bolts

 Stream groupings

 Scheduling and execution environments

 Processes, Executors and Tasks
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Apache Storm – Data Streams
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Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can 

be  data  described by a primitive data type or by a 

complex data type, a serializable object, etc.

Apache Storm: a stream is „n unbounded sequence of 

tuples”  data units = tuples

 Data stream is the key abstraction



Example of data stream

DST  2017 67

Source: http://www.drdobbs.com/open-source/easy-real-time-big-data-analysis-using-s/240143874



Topology

Structure of data processing

program

 Spout: represents a source of streams

 Read tuples from a external source and feed the 

tuples to the topology

 Bolt:  represents processing functions

DST  2017 68

Spout Bolt

Bolt

Bolt

Spout

External source



Spouts and Bolts

Spouts

 Can emit multiple 

streams

 unreliable/reliable

 Main APIs

nextTuple()

fail(Object msgId)

ack(Object msgId)

Bolts

 Can emit multiple 

streams

 Main methods

execute(Tuple input) 

prepare(Map stormConf, 

TopologyContext

context, 

OutputCollector

collector)
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Structure of data processing 

program

setSpout(String id, 

IRichSpout spout, Number 

parallelism_hint)

setBolt(String id, 

IRichBolt bolt, Number 

parallelism_hint)
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Spout Bolt

Worker Process

Executor (1thread)

Task

Bolt

Bolt

Spout

Task

Executor Executor

Task

Runtime



Stream Grouping (1)

 Stream grouping defines how tuples are 

streamed to Tasks in Bolts

 Examples:

 Shuffle grouping, Fields grouping, Partial Key 

grouping, All grouping, Global grouping, None 

grouping, Direct grouping, Local or shuffle grouping
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BoltBolt

Tuples

Stream grouping

Task

Task

Task



Stream grouping (2)
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Soure: https://www.safaribooksonline.com/blog/2013/06/11/your-guide-to-storm/



Example of programming stream 

grouping

TopologyBuilder builder = new TopologyBuilder(); 

builder.setSpout("spout", new RandomSentenceSpout(), 

5);

builder.setBolt("split", new SplitSentence(), 

8).shuffleGrouping("spout");

builder.setBolt("count", new WordCount(), 

12).fieldsGrouping("split", new Fields("word"));

DST  2017 73

Source: https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_storm-user-

guide/content/storm-stream-groupings.html



Integration example
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http://blog.infochimps.com/2012/10/30/next-gen-real-time-streaming-storm-kafka-integration/
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Thanks for 
your attention
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