
Advanced Data Processing Techniques

for Distributed Applications and Systems

Hong-Linh Truong

Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

@linhsolar

DST Summer 2017

DST 2017 1

What this lecture is about?

 Large-scale data analytics

 Advanced messaging

 Apache Kafka

 Advanced data analytics with streaming data

processing

 Stream processing with Apache Apex

 Advanced data analytics with workflows

 Data pipeline with Airflow/Beam
DST 2017 2

Large-scale data analytics

 Analytics-as-a-service

 Understand monitoring information, logs, user activities,

etc.

 Provide insightful information for optimizing business

 Big data analytics

 Handle and process big data at rest and in motion

 Key issues

 Collect/produce messages from distributed application components

and large-scale monitoring systems

 Need scalable and reliable large-scale messaging broker systems

 Require workflow and stream data processing capabilities

 Integrate with various different types of services and data sources

DST 2017 3

Example from Lecture 4

DST 2017 4

Message

Queue

(MQTT/AMQP)

Ingest

Client

NoSQL

database

/Storage

…

Ingest

Client

Ingest

Client

IoT device

IoT device

IoT device

….

IoT device

IoT device

IoT device

• Should I use docker? VMs?

• Where elasticity can be applied?

• Topic/data distribution to ingest clients?

• Multiple topics

• Amount of data per topic varies

• Should not have duplicate data

in database

Implementation atop Google cloud

DST 2017 5

Source: https://cloud.google.com/solutions/architecture/streamprocessing

Example: monitoring and security

DST 2017 6

Security-related information

and metrics from distributed

customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Cloud services and big data analytics

Data sources

(sensors, files, database,

queues, log services)

Messaging systems

(e.g., Kafka, AMQP,

MQTT)

Storage and Database

(S3, InfluxDB, HDFS, Cassandra,

MongoDB, Elastic Search etc.)
Batch data processing

systems

(e.g., Hadoop, Airflow, Spark)

Stream processing

systems

(e.g. Apex, Storm, Flink,

WSO2, Google Dataflow)

Elastic Cloud Infrastructures

(VMs, dockers, OpenStack elastic resource management tools, storage)

Warehouse

Analytics

Operation/Management/

Business Services

DST 2017 7

Recall: Message-oriented

Middleware (MOM)

 Well-supported in large-scale systems for

 Persistent and asynchronous messages

 Scalable message handling

 Message communication and transformation

 publish/subscribe, routing, extraction, enrichment

 Several implementations

DST 2017 8

Apache Qpid™
Amazon SQS

JMS

Apache Kafka

Recall: Workflow of Web services

 You learn it from the Advanced Internet

Computing course

 Typically for composing Web services from

different enterprises/departments for different

tasks

 For big data analytics and Analytics-as-a-

Service

 Tasks are not just from Web services

DST 2017 9

APACHE KAFKA

http://kafka.apache.org/ , originally from LinkedIn

DST 2017 10

http://kafka.apache.org/

Some use cases

 Producers generate a lot of realtime events

 Producers and consumers have different

processing speeds

 E.g. activity logging

DST 2017 11

Message queue

m3 m2 m1Producer

(100x)

Consumer

(10x)

 Rich and diverse types of events

 E.g. cloud-based logging

 Dealing with cases when consumers might be

on and off (fault tolerance support)

Which techniques

can be used to

control this?

Kafka cluster

Kafka Design
 Use cluster of brokers to

deliver messages

 A topic consists of

different partitions

 Durable messages,

ordered delivery via

partitions

 Online/offline consumers

 Using filesystem heavily

for message storage and

caching

DST 2017 12

producer

Broker

Broker

Broker

Broker

Consumer

Partition m m3 m2 m1

… … …

s3 s2 s1Partition s

Topic

Messages, Topics and Partitions

 Ordered, immutable sequence of messages

 Messages are kept in a period of time (regardless of

consumers or not)

 Support total order for messages within a partition

 Partitions are distributed among server

DST 2017 13

Source: http://kafka.apache.org/documentation.html

Consumers

 Consumer pulls the data

 The consumer keeps a single pointer indicating

the position in a partition to keep track the offset

of the next message being consumed

 Why?

 allow customers to design their speed

 support/optimize batching data

 easy to implement total order over message

 easy to implement reliable message/fault tolerance

DST 2017 14

Example of a Producer

DST 2017 15

Example of a consumer

DST 2017 16

Scalability and Fault Tolerance

DST 2017 17

 Partitions are distributed

and replicated among

broker servers

 Consumers are

organized

into groups

 Each message is

delivered

to a consumer instance

in a group

 One partition is assigned

to one consumer

http://kafka.apache.org/documentation.html#majordesignelements

Partitions and partition replication

 Why partitions?

 Support scalability

 enable arbitrary data types and sizes for a

topic

 enable parallelism in producing and

consuming data

 But partitions are replicated, why?

 For fault tolerance

DST 2017 18

Partition Replication

The leader handles all read and write requests

DST 2017 19

Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013

Consumer Group

 Consumer Group: a set of consumers

 is used to support scalability and fault tolerance

 allows multiple consumers to read a topic

 In one group: each partition is consumed by only

consumer instance

 Combine „queuing“ and „publish/subscribe“ model

 Enable different applications receive data from the

same topic.

 different consumers in different groups can retrieve

the same data

DST 2017 20

Group rebalancing

DST 2017 21

Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html

Key Questions/Thoughts

 Why do we need partitions per topic?

 arbitrary data handling, ordering guarantees,

load balancing

 How to deal with high volume of realtime

events for online and offline consumers?

 partition, cluster, message storage, batch

retrieval, etc.

 Queuing or publish-subscribe model?

 check how Kafka delivers messages to

consumer instances/groups

DST 2017 22

STREAMING DATA

PROCESSING

DST 2017 23

Batch, Stream and Interactive

Analytics

Source: https://dzone.com/refcardz/apache-spark

DST 2017 24

Recall: Centralized versus distributed

processing topology

Complex Event Processing

(centralized processing)

Streaming Data Processing

(distributed processing)

Proces

sing

Usually only

queries/patterns are written
Code processing events and

topologies need to be

written

Event cloud

Event source

Proces

sing

Proce

ssing Proces

sing

node

node

node

node

node node

Two views: streams of events or cloud of events

DST 2017 25

Topology of operators

Structure of streaming data

processing programs

 Data source operator: represents a source of streams

 Compute operators: represents processing functions

 Native versus micro-batching

DST 2017 26

External source

Data source

Operator

Compute

Operator

Compute

Operator

Output/Sink

Operator

Data source

Operator

Key concepts

 Structure of the data processing

 Topology: Directed Acycle Graph (DAG) of operators

 Data input/output operators and compute operators

 Accepted various data sources through different

connectors

 Scheduling and execution environments

 Distributed tasks on multiple machines

 Each machine can run multiple tasks

 Stream: connects an output port from an operator to an

input port to another operator

 Stream data is sliced into windows of data for compute

operators

DST 2017 27

Implementations

 Many implementation, e.g.

 Apache Storm

 https://storm.apache.org/

 Apache Spark

 https://spark.apache.org/

 Apache Apex

 https://apex.apache.org/

DST 2017 28

Check:

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-2

Apache Apex – Data Streams

DST 2017 29

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can

be data described by a primitive data type or by a

complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements

(tuples)

 Data stream is the key abstraction

Example of an application in Java

DST 2017 30

Apex - Operators

 Streaming applications are built with a set of

operators: for data and computation

DST 2017 31

Source: https://apex.apache.org/docs/malhar/

 Some common

data operators

(related to other

lectures)

 MQTT

 AMQP

 Kafka

Apex Operators

 Ports: for input and output data

 Data in a stream: streaming windows

DST 2017 32

Source: https://apex.apache.org/docs/apex-3.6/operator_development/

Processing data in operators

DST 2017 33

Different types of Windows: GlobalWindows, TimeWindows,

SlidingTimeWindows, etc.

Source: https://apex.apache.org/docs/apex/operator_development/

Operators Fault tolerance

 Checkpoint of operators: save state of

operators (e.g. into HDFS)

 @Stateless no checkpoint

 Check point interval:

CHECKPOINT_WINDOW_COUNT

 Recovery

 At least once

 At most once

 Exactly once

DST 2017 34

Fault tolerance - Recovery

 At least once

 Downstream operators are restarted

 Upstream operators are replayed

 At most once

 Assume that data can be lost: restart the operator

and subscribe to new data from upstream

 Exactly once

 https://www.datatorrent.com/blog/end-to-end-exactly-

once-with-apache-apex/

DST 2017 35

Node

Container

Execution Management

DST 2017 36

STRAM

Node

NodeNode

op op

op op

op

 Using YARN for execution tasks

 Using HDFS for persistent state

Understand YARN/Hadoop to

understand Apex operator execution

management

DST 2017 37

Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Scalability

 Locality configuration for deployment of

streams and operators

 Affinity and anti-affinity rules

 Possible localities:

 THREAD_LOCAL (intra-thread)

 CONTAINER_LOCAL (intra-process)

 NODE_LOCAL (inter-process but within a Hadoop

node)

 RACK_LOCAL (inter-node)

DST 2017 38

Example of Partitioning and

unification
 Dynamic Partition

 Partition operators

 Dynamic: specifying

when a partition should

be done

 Unifiers for combining

results (reduce)

 StreamCodec

 For deciding which

tuples go to which

partitions

 Using hashcode and

masking mechanism

DST 2017 39

Source:

https://apex.apache.org/docs/apex/application_development/#partitioning

Exercise

How to make sure no duplication results when we

recover End-to-End Exactly Once?

How to use hash and masking mechanism to

distributed tuples?

How to deal with data between operators not in a

CONTAINER_LOCAL or in THREAD_LOCAL

DST 2017 40

ADVANCED

WORKFLOWS/DATA PIPELINE

PROCESSING
DST 2017 41

Use cases

 Access and coordinate many different compute

services, data sources, deployment services,

etc, within an enterprise, for a particular goal

 Implementing complex „business logics“ of your

services

 Analytics-as a service: metrics, user activities

analytics, testing, e.g.

 Analytics of log files (generated by Aspects in

Lecture 3)

 Dynamic analytics of business activities

DST 2017 42

Workflow and Pipeline/data

workflow

 Workflows: a set of coordinated activities

 Generic workflows of different categories of tasks

 Data workflows  data pipeline

„a pipeline is a set of data processing elements connected in

series, where the output of one element is the input of the next

one”

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

 We use a pipeline/data workflows to carry out a

data processing job

 But analytics have many more than just data

processing activities.

DST 2017 43

https://en.wikipedia.org/wiki/Pipeline_(computing)

Example of Pipeline in Google

Dataflow

DST 2017 44

https://cloud.google.com/dataflow/model/pipelines#a-simple-example-pipeline

Data analytics workflow execution

models

DST 2017 45

Data analytics

workflows Execution Engine

Local Scheduler

job job job job

Web

serviceWeb

serviceWeb

service
Web

service

Data sources

DST 2017 46

Your are in a situation:

 Many underlying distributed processing

frameworks

 Apex, Spark, Flink, Google

 Work with different underlying engines

 Write only high-level pipelines

 Stick to your favour programming languages

Apache Beam

 Goal: separate from pipelines from backend

engines

DST 2017 47

Read data

analytics

Post-processing

result
Store analysis

result

Appache Beam

 https://beam.apache.org/

 Suitable for data analysis processes that can be

divided into different independent tasks

 ETL (Extract, Transform and Load)

 Data Integration

 Execution principles:

 Mapping tasks in the pipeline to concrete tasks that

are supported by the selected back-end engine

 Coordinating task execution like workflows.

DST 2017 48

Basic programming constructs

 Pipeline:

 For creating a pipeline

 PCollection

 Represent a distributed dataset

 Transform

[Output PCollection] = [Input PCollection] | [Transform]

 Possible transforms: ParDo, GroupByKey, Combine,

etc.

DST 2017 49

A simple example with Google

Dataflow as back-end engine

DST 2017 50

DST 2017 51

But what if you need diverse types of

tasks with various back-end

services?

 Workflow systems

Example of using workflows

DST 2017 52

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Security-related information

and metrics from distributed

customers

Representing and programming

workflows/data workflows

 Programming languages

 General- and specific-purpose programming
languages, such as Java, Python, Swift

 Descriptive languages

 BPEL and several languages designed for
specific workflow engines

53DST 2017

Airflow from Airbnb

 http://airbnb.io/projects/airflow/

 Features

 Dynamic, extensible, scalable workflows

 Programmable language based workflows

 Write workflows as programmable code

 Good and easy to study to understand concepts

of workflows/data pipeline

DST 2017 54

http://airbnb.io/projects/airflow/

Airflow Workflow structure

 Workflow is a DAG (Direct Acyclic Graph)

 A workflow consists of a set of activities

represented in a DAG

 Workflow and activities are programed using

Python – described in code

 Workflow activities are described by Airflow

operator objects

 Tasks are created when instantiating operator

objects

DST 2017 55

Airflow from Airbnb

 Rich set of operators

 So that we can program different kinds of tasks and

integrate with different systems

 Different Types of operators for workflow activities

 BashOperator, PythonOperator, EmailOperator,

HTTPOperator, SqlOperator, Sensor,

 DockerOperator, HiveOperator,

S3FileTransferOperator, PrestoToMysqlOperator,

SlackOperator

DST 2017 56

Example for processing signal file

DST 2017 57

Example for processing signal file

DST 2017 58

Example

DST 2017 59

Elasticity control for

Workflows/Data Flows

 How to scale the workflows?

 Scheduling in a large resource pool (e.g., using

clusters)

 Elasticity controls of virtualized resources

(VMs/containers) for executing tasks

 Distributed Task Queue, e.g. Celery
http://docs.celeryproject.org/en/latest/getting-

started/brokers/index.html

Job description/request sent via queues

Results from jobs can be stored in some back-end

DST 2017 60

http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

Other systems, e.g., AWS Data

Pipeline

DST 2017 61

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide

Summary

 Analytics-as-a-service for large-scale distributed

applications and big data analytics require different set

of tools

 Kafka, Apache Apex and Airflow are just some of the

key frameworks

 There are a lot of tools

 Need to understand common concepts and

distinguishable features

 Select them based on your use cases and application

functionality and performance requirements

 Exercises:

 a small application utilizing Kafka/MQTT and Apache Apex

 Log analytics using AOP and Kafka and Airflow

DST 2017 62

Further materials

 http://kafka.apache.org

 http://www.corejavaguru.com/bigdata/storm/stream-groupings

 https://cloud.google.com/dataflow/docs/

 http://storm.apache.org/

 https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-

documentdb/

DST 2017 63

https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/

STREAMING ANALYSIS WITH

APACHE STORM

https://storm.apache.org/

DST 2017 64

Apache Storm – Key concepts

 Originally from Twitter

 Data

 Structure of the data processing

 Topology

 Spouts

 Bolts

 Stream groupings

 Scheduling and execution environments

 Processes, Executors and Tasks

DST 2017 65

Apache Storm – Data Streams

DST 2017 66

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can

be data described by a primitive data type or by a

complex data type, a serializable object, etc.

Apache Storm: a stream is „n unbounded sequence of

tuples”  data units = tuples

 Data stream is the key abstraction

Example of data stream

DST 2017 67

Source: http://www.drdobbs.com/open-source/easy-real-time-big-data-analysis-using-s/240143874

Topology

Structure of data processing

program

 Spout: represents a source of streams

 Read tuples from a external source and feed the

tuples to the topology

 Bolt: represents processing functions

DST 2017 68

Spout Bolt

Bolt

Bolt

Spout

External source

Spouts and Bolts

Spouts

 Can emit multiple

streams

 unreliable/reliable

 Main APIs

nextTuple()

fail(Object msgId)

ack(Object msgId)

Bolts

 Can emit multiple

streams

 Main methods

execute(Tuple input)

prepare(Map stormConf,

TopologyContext

context,

OutputCollector

collector)

DST 2017 69

Structure of data processing

program

setSpout(String id,

IRichSpout spout, Number

parallelism_hint)

setBolt(String id,

IRichBolt bolt, Number

parallelism_hint)

DST 2017 70

Spout Bolt

Worker Process

Executor (1thread)

Task

Bolt

Bolt

Spout

Task

Executor Executor

Task

Runtime

Stream Grouping (1)

 Stream grouping defines how tuples are

streamed to Tasks in Bolts

 Examples:

 Shuffle grouping, Fields grouping, Partial Key

grouping, All grouping, Global grouping, None

grouping, Direct grouping, Local or shuffle grouping

DST 2017 71

BoltBolt

Tuples

Stream grouping

Task

Task

Task

Stream grouping (2)

DST 2017 72

Soure: https://www.safaribooksonline.com/blog/2013/06/11/your-guide-to-storm/

Example of programming stream

grouping

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout", new RandomSentenceSpout(),

5);

builder.setBolt("split", new SplitSentence(),

8).shuffleGrouping("spout");

builder.setBolt("count", new WordCount(),

12).fieldsGrouping("split", new Fields("word"));

DST 2017 73

Source: https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_storm-user-

guide/content/storm-stream-groupings.html

Integration example

DST 2017 74

http://blog.infochimps.com/2012/10/30/next-gen-real-time-streaming-storm-kafka-integration/

75

Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

@linhsolar

DST 2017

http://dsg.tuwien.ac.at/staff/truong

