mn DST Summer 2017

Advanced Data Processing Techniques
for Distributed Applications and Systems

Hong-Linh Truong
Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong
@linhsolar

DST 2017 1

mn What this lecture is about?

» Large-scale data analytics

= Advanced messaging
» Apache Kafka

= Advanced data analytics with streaming data
processing
= Stream processing with Apache Apex

» Advanced data analytics with workflows

= Data pipeline with Airflow/Beam
DST 2017 2

mn Large-scale data analytics

= Analytics-as-a-service
* Understand monitoring information, logs, user activities,
etc.
= Provide insightful information for optimizing business
= Big data analytics
= Handle and process big data at rest and in motion
= Key issues

= Collect/produce messages from distributed application components
and large-scale monitoring systems

= Need scalable and reliable large-scale messaging broker systems
= Require workflow and stream data processing capabilities
= |ntegrate with various different types of services and data sources

DST 2017 3

mn Example from Lecture 4

» Multiple topics

« Amount of data per topic varies
Should not have duplicate data

[T FeEEs in database

IoT device

loT dewce
Message
Queue
loT dewce (MQTT/AMQP)

loT deV|ce

IoT device

« Should I use docker? VMs?
» Where elasticity can be applied?
» Topic/data distribution to ingest clients?

DST 2017 4

Ingest

Client

Ingest
Client

Ingest
Client

T T

NoSQL

database
/Storage

DisTRBUTED Systems Grour *

mn Implementation atop Google cloud

@ N
Constrained Standard D e
Devices Devices Google Cloud Platform e
=) i @
d Storage .
5= o ©
ﬁ Pipelines]
EE—
é Non-TCP i HTTPS . Q @
i e.g. BLE
é g e Applications &
Gateway e\ Presentation
L (&
Ingest 6
ﬁ é Analytics
N N \)

Source: https://cloud.google.com/solutions/architecture/streamprocessing

DST 2017 5

DisTRBUTED SvsTeMs Grovr

mn Example: monitoring and security

Security-related information
and metrics from distributed
customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

DST 2017 6 HAET

DistRBUTED SvsTEMs Grour * o @

mn Cloud services and big data analytics

Operation/Management/
b Business Services
Data sources Messaging systems Stream processing Warehouse
(sensors, files, database, — (e.g., Kafka, AMQP, —— SPREIE . Analytics]
queues, log services) MQTT) (e.g. Apex, Storm, Flink,
WSO2, Google Dataflow)

l—l

Storage and Database
(S3, InfluxDB, HDFS, Cassandra, <
MongoDB, Elastic Search etc.)

Batch data processing
systems
T (e.g., Hadoop,lAirfloW, Spark)

\ 4

Elastic Cloud Infrastructures
(VMs, dockers, OpenStack elastic resource management tools, storage)

DST 2017 7

<

Recall: Message-oriented
Middleware (MOM)

= Well-supported in large-scale systems for
» Persistent and asynchronous messages
= Scalable message handling
» Message communication and transformation
» publish/subscribe, routing, extraction, enrichment
= Several implementations

Amazon SQS

Apache Kafka

JMS

DST 2017

Apache Qpid™

BR200It

mn Recall: Workflow of Web services

= You learn it from the Advanced Internet
Computing course

= Typically for composing Web services from
different enterprises/departments for different
tasks

= For big data analytics and Analytics-as-a-
Service

= Tasks are not just from Web services

DST 2017 9

, originally from LinkedIn

APACHE KAFKA

DST 2017 10

http://kafka.apache.org/

mn Some use cases

= Producers generate a lot of realtime events
* Producers and consumers have different

orocessing speeds

= E.g. activity logging

Message queue

4
4
4
4

/’

f
+ 1 Which techniques
i can be used to
I control this?

o o e e e e e

[Producer
(100x)

J—

m3|m2

m1

4{

Consumer
(10x)

]

= Rich and diverse types of events

= E.g.cloud-based logging

= Dealing with cases when consumers might be
on and off (fault tolerance support)

DST 2017

11

Broker

—

Broker

Broker

l Broker

Kafka DeS|gn

Topic
Partition m m3 m2 m1l
Partition s s3 s2 sl
DST 2017 12

Use cluster of brokers to
deliver messages

A topic consists of
different partitions

Durable messages,
ordered delivery via
partitions

Online/offline consumers

Using filesystem heavily
for message storage and
caching

DisTRBUTED SvsTeMs Grovr

mn Messages, Topics and Partitions

* QOrdered, immutable sequence of messages

» Messages are kept in a period of time (regardless of
consumers or not)

= Support total order for messages within a partition
= Partitions are distributed among server

Partition
0

FPartition
1

Partition
2

Old

Anatomy of a Topic

0

1

2

3

4

5

&

7

8

i

90

114

—y

2 I\
_ 0
/Writes

1014
2,
_

= Mew

Source: http://kafka.apache.org/documentation.htmi

DST 2017

13

LMISTRIBUTED SYSTEMS (yROLT “

mn consumers

= Consumer pulls the data

= The consumer keeps a single pointer indicating
the position in a partition to keep track the offset
of the next message being consumed

= Why?
—> allow customers to design their speed
—> support/optimize batching data
—> easy to implement total order over message
- easy to implement reliable message/fault tolerance

DST 2017 14

Bl

Bl

DST 2017

Example of a Producer

public SimpleProducer(String url, String inputfile, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers”, url);

props.put(“client.id", "rdsea.io.training.democ"};

props.put('"key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer"};
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producer = new KafkaProducer<Integer,String=(props);

this.topic = topic;
this.inputfile =inputfile;

}

public void run() {
int messagelo = 1;
read data from file:
try {
Reader in = new FileReader(inputfile);
Iterable<CSVRecord= records = CSVFormat.RFC4180.withFirstRecordAsHeader() .parse(in);
for (CSVRecord record : records) {

JsonObject event = new JsonObject();
event .addProperty("USERPHONE", 6645);
event .addProperty("TIME", Long.parselLong(record.get("TIME")));

event .addProperty("lat", Float.parsefFloat(record.get("LATLTUDE")));
event .addProperty("lon", Float.parseFloat(record.get("LONGITUDE")));

event .addProperty("GSM EIT ERROR RATE", Float.parseFloat(record.get("GSM BIT ERROR RATE")));
event .addProperty("GSM_SIGNAL STRENGTH", Float.parseFloat(record.get("GSM_SIGNAL _STRENGTH")));
a simple way to handle m 1g data 1s to skip the record

if (!record.get("LOC_! ") .equals("")) {

event .addProperty(LI CUR: , Float.parseFloat(record.get("LOC
1 else {

continue;
3

if (!record.get("LOC_SPEED") .equals("")) {

event.addProperty("'LOC_SPEED", Float.parseFloat(record.get("LOC_SPEED")});
} else {

continue;

CCURACY ")))

}

String eventString = "{\"event\":
try {

+ event + "}";

producer.send(new ProducerRecord<Integer,String=(topic,messageNo,eventString)).get();
} catch (ExecutionException e) {
TODO Auto-generated catch block
e.printStackTrace();

! |
Curmtam cet mednd T o f 10ant e amn s [0 0 maceaanhla 0 U mndnnd S ed e o LY .

15

LISTRIBUTED SYSTEMS (yROLT

n Example of a consumer

public class SimpleConsumer {
private final KafkaConsumer=Integer, String= consumer;
private final String topic;
private final int pollNr;
=] public SimpleConsumer(String url, String topic, int pollNr) {

Properties props = new Properties();
just use standard example configuration
props.put (ConsumerConfig.B00TSTRAP SERVERS CONFIG, url);
props.put (ConsumerConfig.GROUP ID CONFIG, "RDSEA Simple Consumer');
props.put (ConsumerConfig.ENABLE AUTO COMMIT CONFIG, "true");
props.put (ConsumerConfig.AUTO COMMIT INTERVAL M5 CONFIG, "l00O");
props.put (ConsumerConfig.SESSION TIMEOUT MS CONFIG, "30000");
props.put (ConsumerConfiq.KEY DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
props.put (ConsumerConfig. VALUE DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.StringDeserializer”);

consumer = new KafkaConsumer=Integer, String=(props);
this.topic = topic;
this.pollNr = pollNr;

- T
=] public void readData() {
consumer.subscribe(Collections.singletonlist(this.topic));
ConsumerRecords<Integer, String= records = consumer.poll(pollhr);
for (ConsumerRecord=Integer, String= record : records) {
System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset());
I
- T
E public static void main(String[] args) {
TODO Auto-generated method stub
if (args.length = 3) {
System.out.println("Usage: SimpleProducer kafka broker topic nr");
System.exit(0);
I

int pollNr =Integer.valuelf(args[2]);
SimpleConsumer consumer = new SimpleConsumer(args[0], args[l], pollNr);
consumer. readData() ;

- }
}
DST 2017 16

LISTRIBUTED SYSTEMS (yROLT

Mﬂ Scalability and Fault Tolerance

= Partitions are distributed
and replicated among

Kafka Cluster

broker servers I—Sewer‘l—‘ Server 2

P3 P1
= Consumers are AN

organized //X - \\

INto groups . - —

. EaCh message iS Consumer Group A Consumer Group B——
delivered
to a consumer instance http://kafka.apache.org/documentation.html#majordesignelements
In a group

= One partition is assigned
to one consumer

DST 2017 17

mn Partitions and partition replication

= Why partitions?
= Support scalability

= enable arbitrary data types and sizes for a
topic

= enable parallelism in producing and
consuming data

= But partitions are replicated, why?
= For fault tolerance

DST 2017 18

mn Partition Replication

producer

consumer

broker 1 broker 2 broker 3

Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013

The leader handles all read and write requests

DST 2017 19

mn Consumer Group

= Consumer Group: a set of consumers
» |s used to support scalability and fault tolerance
= allows multiple consumers to read a topic

= In one group: each partition is consumed by only
consumer instance

= Combine ,queuing” and ,publish/subscribe” model

= Enable different applications receive data from the
same topic.

= different consumers in different groups can retrieve
the same data

DST 2017 20

TU .
n Group rebalancing

Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html

DST 2017 21

DisTRBUTED SysTEMS GROUP

mn Key Questions/Thoughts

= Why do we need partitions per topic?

—> arbitrary data handling, ordering guarantees,
load balancing

= How to deal with high volume of realtime
events for online and offline consumers?

—> partition, cluster, message storage, batch
retrieval, etc.

= Queuing or publish-subscribe model?

- check how Kafka delivers messages to
consumer instances/groups

DST 2017 22

STREAMING DATA
PROCESSING

DST 2017 23

mn Batch, Stream and Interactive
Analytics

Batch — Ad-hoc queries on
large data sets. I/O Bound

Data

Interactive — Querying ggg};— ,l [?,j ﬁ,
historical data \\ APACHE] mongoDB sriak
| DRILL ‘&g
\ AP ACHE .
W HBRSE &

Real Time

Streaming

Source: https://dzone.com/refcardz/apache-spark

DST 2017 24

a
LISTRIBUTED SYSTEMS (yROLT

Cabinet .=

mn Recall: Centralized versus distributed
processing topology

Two views: streams of events or cloud of events

Complex Event Processing
(centralized processing)

Event cloud
Proces ™\

Sin

node | node] node

Usually only
gueries/patterns are written

DST 2017 25

v

Streaming Data Processing
(distributed processing)

Proce
in Proces
node sina
node
Proces
sin

node

Code processing events and
topologies need to be
written

IS Structure of streaming data
processing programs

Topology of operators

External source
Compute
‘_ ______ o Data source @ Yy------ O ef;tor
Operator g -
<
Data source Compute
.— -------- --- Operator Operator

Output/Sink
Operator

Native versus micro-batching

DST 2017 26

Data source operator: represents a source of streams
Compute operators: represents processing functions

mn Key concepts

= Structure of the data processing
= Topology: Directed Acycle Graph (DAG) of operators
= Data input/output operators and compute operators

= Accepted various data sources through different
connectors

Scheduling and execution environments
= Distributed tasks on multiple machines
= Each machine can run multiple tasks

= Stream: connects an output port from an operator to an
Input port to another operator

= Stream data is sliced into windows of data for compute
operators

DST 2017 27

mn Implementations

* Many implementation, e.qg.
= Apache Storm
= https://storm.apache.org/

= Apache Spark
= https://spark.apache.org/

= Apache Apex
= https://apex.apache.org/

Check:

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-
processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-
processing-frameworks-part-2

DST 2017 28

mn Apache Apex — Data Streams

= Data stream is the key abstraction

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can
be data described by a primitive data type or by a
complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements
(tuples)

DST 2017 29

mn Example of an application in Java

* @author truong

public class VietcontrolMQTTInput extends AbstractMgttlnputOperator{
public final transient DefaultOutputPort=String= out;

@ApplicationAnnotation(name="MySecondipplication") B public VietcontrolMQTTInput() {
public class BTSApplication implements StreamingApplication this.out = new DefaultOutputPort<=();
{ out .emit est message");
String topic ="apextest"; - I
QoS qos; @0verride
B public void emitTuple(org.fusesource.mqtt.client.Message msg) {
. . . System.out.println{"topic: "+msg.getTopic());
pumiﬁ-BTSlplegaél?r.l(Lo{cr e byte[] data =msg.getPayload();
15.q0s 0o Al Mol _UNLE; String v = new String(data, Charset.forName("UTF-28") };
3 ! System.out.println{v);
@verride out.emit(v);
i public void populateDAG(DAG dag, Configuration conf) L }
B {

[}
System.out.println{"Start the application by connecting to MQT.
MgttClientConfig btsmgttConfig = new MgttClientConfig();

I

btsmgttConfig.setHost("localhost");
btsmgttConfig.setPort(1883);

btsmgttConfig.setUserName("guest");
btsmgttConfig.setPassword("guest") ;
btsmgttConfig.setCleanSession(true);

[VietcontrolMQTTInput btsInput = dag.addOperator("input”, VietcontrolMQTTInput.class);
btsInput.setMgttClientConfig(btsmqttConfig) ;
System.out.println(“sSubscribe topics");
btsInput.addSubscribeTopic(topic, qos);

[ConsoleQutputOperator cons = dag.addOperator("console", new ConsolelutputOperator());
cons.setSilent(false) ;

System.out.println("Just create one single stream");
dag.addStream("test", btsInput.out, cons.input).setlocality(locality.CONTAINER LOCAL);

[
s

DST 2017 30

mn Apex - Operators

= Streaming applications are built with a set of
operators: for data and computation

Malhar Operators

Input/Output Operators u S O m e CO m m O n

data o
In Memory . 3 Protocol Read/ perato rS
(related to other

Compute Operators

: Machine Learning IeCtu reS)
Pattern Matching Stats & Math & Aldortthims
. * MQTT
Parsers Ul & Charting SFream Ougr\(& Social Media
Operators Manipulators Scripting

= AMQP
Source: https://apex.apache.org/docs/malhar/ » Kafka

DST 2017 31

mn Apex Operators

Ports @ Output Ports @
Upstream operators Downstream operators
Operators having directed path Operators having directed path
to opr from opr

Source: https://apex.apache.org/docs/apex-3.6/operator_development/

= Ports: for input and output data
= Data in a stream: streaming windows

DST 2017 32

mn Processing data in operators

Different types of Windows: GlobalWindows, TimeWindows,
SlidingTimeWindows, etc.

| Component:setup(Context context) | | Component:isetup(Context context) |
| Dperatur::beginWinriiﬂwn:Iung windowld)] | E}peratur::beginWin::iﬂw{Iﬂng windowld)]
[InputOperator::emitTuples()]J { |HPUtF'ﬂﬂ;IPF0EESS{}]J
[Dperatur::er;dWmduw{}] [Dperatﬂr::e;mvﬁnduw{}]
[Campﬂnent:r:teardﬂwn{}l] {Camponent::teardﬂwn{}]
Flow for Input Adapters Flow for Generic Operators

and Output Adapters

Source: https://apex.apache.org/docs/apex/operator_development/

DST 2017 33

CHSTRIBUTED SYSTEMS (GROLE

mn Operators Fault tolerance

= Checkpoint of operators: save state of
operators (e.qg. into HDFS)

= @Stateless no checkpoint

= Check point interval:
CHECKPOINT_WINDOW_ COUNT

= Recovery
= At least once
= At most once
= Exactly once

DST 2017 34

mn Fault tolerance - Recovery

= Atleast once
= Downstream operators are restarted
= Upstream operators are replayed

= At most once

= Assume that data can be lost: restart the operator
and subscribe to new data from upstream

= Exactly once

= https://www.datatorrent.com/blog/end-to-end-exactly-
once-with-apache-apex/

DST 2017 35

mn Execution Management

= Using YARN for execution tasks
= Using HDFS for persistent state

Node

@

STRAM

\
\
Node ®

DST 2017 36

mn Understand YARN/Hadoop to
understand Apex operator execution
management

MapReduce Status ——»
Job Submission
Mode Status

Resource Reguest .. -......

Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
DST 2017 37 il

.
a
TED SYSTEMS CyROLTE

mn Scalability

» Locality configuration for deployment of
streams and operators

= Affinity and anti-affinity rules

= Possible localities:
= THREAD LOCAL (intra-thread)
= CONTAINER_LOCAL (intra-process)

= NODE_LOCAL (inter-process but within a Hadoop
node)

= RACK LOCAL (inter-node)

DST 2017 38

IS Example of Partitioning and
unification

= Dynamic Partition
= Partition operators

Physical DAG with (1a, 1b, 1c), and (2a, 2b): Bottleneck on intermediate Unifier

= Dynamic: specifying
when a partition should

be done h 9
= Unifiers for combining “@
results (reduce) e @

= StreamCodec

= For deciding which
tuples go to which
partitions

Physical DAG with (1a, 1b, 1c), and (2a, 2b): No bottleneck

» Using hashcode and
masking mechanism

Source:
https://apex.apache.org/docs/apex/application_development/#partitioning

DST 2017 39

mn Exercise

How to make sure no duplication results when we
recover End-to-End Exactly Once?

How to use hash and masking mechanism to
distributed tuples?

How to deal with data between operators not in a
CONTAINER _LOCAL orin THREAD LOCAL

DST 2017 40

ADVANCED
WORKFLOWS/DATA PIPELINE
PROCESSING

DST 2017

mn Use cases

= Access and coordinate many different compute
services, data sources, deployment services,
etc, within an enterprise, for a particular goal

* Implementing complex ,business logics” of your
services

= Analytics-as a service: metrics, user activities
analytics, testing, e.g.

= Analytics of log files (generated by Aspects in
Lecture 3)

= Dynamic analytics of business activities

DST 2017 42

Workflow and Pipeline/data
workflow

= Workflows: a set of coordinated activities

= Generic workflows of different categories of tasks
» Data workflows - data pipeline

,a pipeline is a set of data processing elements connected in

series, where the output of one element is the input of the next
one”

Source:

= We use a pipeline/data workflows to carry out a
data processing job

= But analytics have many more than just data
processing activities.

DST 2017 43

https://en.wikipedia.org/wiki/Pipeline_(computing)

Example of Pipeline in Google
Dataflow

JAVA

public static void main(String[] args) {
// Create a pipeline parameterized by commandline flags.
Pipeline p = Pipeline.create(PipelineOptionsFactory.fromArgs(arg));

p.apply(TextIO.Read.from("gs://...")) // Read input.
.apply(new CountWords()) // Do some processing.
.apply(TextIO.Write.to("gs://...")); // Write output.

// Run the pipeline.

p.run{);

}

https://cloud.google.com/dataflow/model/pipelines#a-simple-example-pipeline

DST 2017 44

LISTRIBUTED SYSTEMS (yROLT

IS Data analytics workflow execution

models

] —

Execution Engine

DST 2017

45

servira
Web

service

Data sources

DistRBUTED SvsTEMs Grour * o @

Your are In a situation:

= Many underlying distributed processing
frameworks
= Apex, Spark, Flink, Google

= Work with different underlying engines
= \Write only high-level pipelines
= Stick to your favour programming languages

DST 2017 46

mn Apache Beam

» Goal: separate from pipelines from backend
engines

Read data Post-processing] (Store analysis
analytics result J 'L result

¢

APACHE

park

M\ Apache Apex™

DST 2017 47

Dataflow

mn Appache Beam

= https://beam.apache.org/

= Suitable for data analysis processes that can be
divided into different independent tasks
= ETL (Extract, Transform and Load)
= Data Integration

= EXxecution principles:

= Mapping tasks in the pipeline to concrete tasks that
are supported by the selected back-end engine

= Coordinating task execution like workflows.

DST 2017 48

mn Basic programming constructs

= Pipeline:
= For creating a pipeline
= PCollection
= Represent a distributed dataset

= Transform
[Output PCollection] = [Input PCollection] | [Transform]

» Possible transforms: ParDo, GroupByKey, Combine,
etc.

DST 2017 49

A simple example with Google
Dataflow as back-end engine

import apache beam as beam
from apache_beam.options.pipeline options import PipelineOptions

p = beam.Pipeline(options=PipelineOptions())

entries = p | 'ReadHadoopResult' =>> beam.io.ReadFromText('gs://.../ElectricityAlarme
i/felectricity _alarm_frequency-2017-05-11-80-vn.csv')
class ExtractAlarmFrequency(beam.DoFn):
def process(self, elements):
return
frequency = entries| beam.ParDo(ExtractAlarmFrequency())

frequency | 'write' >> beam.io.WriteToText('gs://...[JElectricityAlarm’)
result = p.run()

result.wait until finish()

DST 2017 50

But what if you need diverse types of
tasks with various back-end
services?

- Workflow systems

DST 2017 51

mn Example of using workflows

Security-related informatio
and metrics from distribut
customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

DST 2017 52

DisTRBUTED SysTEMS GROUP

Representing and programming
workflows/data workflows

= Programming languages
» General- and specific-purpose programming
languages, such as Java, Python, Swift

» Descriptive languages

» BPEL and several languages designed for
specific workflow engines

DST 2017 53

mn Airflow from Airbnb

* Features
= Dynamic, extensible, scalable workflows
= Programmable language based workflows
= Write workflows as programmable code

= Good and easy to study to understand concepts
of workflows/data pipeline

DST 2017 54

http://airbnb.io/projects/airflow/

mn Airflow Workflow structure

= Workflow is a DAG (Direct Acyclic Graph)

= A workflow consists of a set of activities
represented in a DAG
= Workflow and activities are programed using
Python — described in code
= Workflow activities are described by Airflow
operator objects

= Tasks are created when instantiating operator
objects

DST 2017 55

mn Airflow from Airbnb

* Rich set of operators

= So that we can program different kinds of tasks and
Integrate with different systems

= Different Types of operators for workflow activities

= BashOperator, PythonOperator, EmailOperator,
HTTPOperator, SglOperator, Sensor,

= DockerOperator, HiveOperator,
S3FileTransferOperator, PrestoToMysqlOperator,
SlackOperator

DST 2017 56

mn Example for processing signal file

Airflow
GUI

UserApp

4

worker Computing servers

j Notification MOTT brok
[download_signal_file]—-[analyticsinternelusage]» sendresults rL Service - Q roker

\ "" \ N T (REST, NodelS)

—f -.."'-.

| -
I Localfile system T~ 4.
: (e.g. /opt/data/airflow) T~ ElasticSearch
y
[Blob File Server]

DST 2017 57

A
|
|
|
|
1

LMISTRIBUTED SYSTEMS (yROLT “ e

mn Example for processing signal file

DAG_NAME = 'signal upload file'

default_args = {
‘owner': 'hong-linh-truong',
'depends_on_past': False,
'start_date': datetime.now(),

1
dag = DAG(DAG_NAME, schedule interval=None, default_args=default_args)
|

stations=["stationl", "stationZ"]

def checkSituation(**kwargs):
f=f
=t
return t

downloadlogscript="curl file: home/truong/myprojects/mygit/rdsea-mobifone-training/data/opensignal /sample-0ct182016.csv -0 fopt/data/air

|t_downloadlogtocloud= BashOperator(
task_id="download signal_file",
bash_command=downloadlogscript,
dag = dag
)

t_analytics= BashOperator(
task_id="analyticsinternetusage",
bash_command="/usr/bin/python /home/trucng/myprojects/mygit/rdsea-mobifone-tjraining/examples/databases/elasticsearch/uploader/src/uploa
dag = dag
)
t_sendresult =SimpleHttpOperator(
task_id='sendresults’',
method='FOST',
http_conn_id='stationl’,
endpoint="api/update/credit’,

data=json.dumps({"userphone": "B66412345","credit":10}),
headers={"Content-Type": "application/json"},
dag = dag

)

t_analytics.set_upstream(t_downloadlogtocloud)
t_sendresult.set_upstream(t_analytics)

DST 2017 58

LISTRIBUTED SYSTEMS (yROLT

&+ Airflow DAGs 3 rowse Admin~ Docs~ 1514UTC O

DAGs

LT

Show :l entries Search:
e DAG Schedule Owner Recent Statuses @ Links
©® |fBF example_bash_operator m airflow PR WA= S+E=EDC
©® |[fOF example_branch_dop_operator_v3 airflow PR IWASS+E=EDC
©® |fBF example_branch_operator airflow PR IWA=SE=EC
©® [TOf example_hitp_operator airflow PR IWASS+E=EDC
@ [FBF example passing params_via_test command airflow PR IWA=SE=EC
® [TBF example_python_operator m airflow PR WA= SE=EC
©® |fBF example_short_circuit_operator airflow PR WA= S+E=EC
O [TBF example_skip_dag airflow PR WA= SE=EC
® |fBf example_subdag_operator airflow PR WA= S+E=EC
©® [TBf example_trigger_controller_dag airflow PR WA= S+E=EC
® |fBF example_frigger target dag m airflow PR WA= S+E=EC
O [ToF example_twitter_dag Ekhtiar PR WA= S+E=EC
® |f&8 example_xcom airflow PR WA= SE=EDC
©® [TGf signal_upload file m hong-linh- PR WA= S+E=EC
truong
® [Tof tutorial airflow PR WA =D
Showing 1 to 15 of 15 entries Previous Next

Elasticity control for
Workflows/Data Flows

= How to scale the workflows?

= Scheduling in a large resource pool (e.g., using
clusters)

= Elasticity controls of virtualized resources
(VMs/containers) for executing tasks

= Distributed Task Queue, e.g. Celery

Job description/request sent via queues
Results from jobs can be stored in some back-end

DST 2017 60

http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

Il Other systems, e.g., AWS Data
Pipeline

Task: launch
data analysis

Task: copy
log files

Amazon EC2 Amazon S3 Amazon EMR

Components

- "CopyActivity",

45
§

-
{

"name" : "InputData”,

"type" : "MySqlDataNode”, {@CopyData_1_2012-08-25T17.00:00_Attempt=3

i
i

i)
i
c
£
£
E
T
(=)
w
£
T
2
&

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide

DST 2017 61

DisTRBUTED SysTEMS GROUP

mn Summary

* Analytics-as-a-service for large-scale distributed
applications and big data analytics require different set
of tools

» Kafka, Apache Apex and Airflow are just some of the
key frameworks
» There are a lot of tools

= Need to understand common concepts and
distinguishable features

= Select them based on your use cases and application
functionality and performance requirements

= [EXxercises:

= asmall application utilizing Kafka/MQTT and Apache Apex

= Log analytics using AOP and Kafka and Airflow
DST 2017 62

mn Further materials

http://www.corejavaguru.com/bigdata/storm/stream-groupings

https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-
documentdb/

DST 2017 63

LISTRIBUTED SYSTEMS (sRidl

https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/

https://storm.apache.org/

STREAMING ANALYSIS WITH
APACHE STORM

DST 2017 64

mn Apache Storm — Key concepts

= Originally from Twitter
= Data
= Structure of the data processing
= Topology
= Spouts
= PBolts
= Stream groupings
= Scheduling and execution environments
= Processes, Executors and Tasks

DST 2017 65

mn Apache Storm — Data Streams

= Data stream is the key abstraction

Recall:
Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can
be data described by a primitive data type or by a
complex data type, a serializable object, etc.

Apache Storm: a stream is ,n unbounded sequence of
tuples” = data units = tuples

DST 2017 66

Example of data stream

System to capture
data for vehicles
crossing the
checkpoint.

v

FileListenerSpout

LogFile

[AB123, 90, NCity]

[CD234, 60, SCity]

[PQ453, 70, NCity]

[AB123, 90, NCity]

[CD234, 60, SCity]

[PQ453, 70, NCity]

BOLT

Source: http://www.drdobbs.com/open-source/easy-real-time-big-data-analysis-using-s/240143874

DST 2017

67

BEEl Structure of data processing
program

Topology

External source

\\:} BOIt

= Spout: represents a source of streams

» Read tuples from a external source and feed the
tuples to the topology

= Bolt: represents processing functions

DST 2017 68

Spouts and Bolts

Spouts Bolts
= Can emit multiple = Can emit multiple
streams streams
= unreliable/reliable = Main methods
= Main APIs execute (Tuple 1nput)
nextTuple () prepare (Map stormConft,
fail (Object msgld) TopologyContext
ack (Object msgId) context,
OutputCollector
collector)

DST 2017 69

BEE Structure of data processing
program

Worker Process
setSpout (String id,

IRichSpout spout, Number

parallelism hint) r (1thread)
setBolt (String id,

IRichBolt bolt, Number :

parallelism hint)

DST 2017 70 Runtime

[2 b [) " -
DistRBUTED SvsTEMs Grour * o @

mn Stream Grouping (1)

Bolt Bolt

Stream grouping

= Stream grouping defines how tuples are
streamed to Tasks in Bolts

= Examples:

= Shuffle grouping, Fields grouping, Partial Key

grouping, All grouping, Global grouping, None
grouping, Direct grouping, Local or shuffle grouping

DST 2017 71

mn Stream grouping (2)

bota Shuffle s s Al Ras

bolt A Fields boit B bolt A Global bolt B

O feid X O

O
O fold Y \O

Soure: https://www.safaribooksonline.com/blog/2013/06/11/your-guide-to-storm/

DST 2017 79

DisTRBUTED SysTEMS GROUP

ISl Example of programming stream
grouping

TopologyBuilder builder = new TopologyBuilder () ;

builder.setSpout ("spout", new RandomSentenceSpout (),
2)

builder.setBolt ("split", new SplitSentence(),
8) .shuffleGrouping ("spout") ;

builder.setBolt ("count", new WordCount (),
12) .fi1eldsGrouping ("split", new Fields ("word")):;

Source: https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_storm-user-
guide/content/storm-stream-groupings.htmi

DST 2017 73

Integration example

1 | Flexible 2 Data failover 3 | Reaktime, fault-folerant, Guaranteed
data input snapshots scalable, in-stream processing data delivery

N

N

HTTP oo R @ oy | . —_— APPLICATION
LOGS
..... ﬁ 2 e —— NOSQL
DATABASE
o
-
DATA PARTNERS <
P
&
----- — Bl HADOOP
BATCH UPLOAD o
CUSTOM
CONNECTORS B WIY 727 T T ﬁ """""" RDBMS

http://blog.infochimps.com/2012/10/30/next-gen-real-time-streaming-storm-kafka-integration/

DST 2017 74

LISTRIBUTED SYSTEMS (yROLT

W
.,

. "".I

Thanks for
your attention

Hong-Linh Truong
Distributed Systems Group, TU Wien
truong@dsg.tuwien.ac.at

@linhsolar

DST 2017 75

http://dsg.tuwien.ac.at/staff/truong

