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mn What this lecture is about?

» Large-scale data analytics

= Advanced messaging
» Apache Kafka

= Advanced data analytics with streaming data
processing
= Stream processing with Apache Apex

» Advanced data analytics with workflows

= Data pipeline with Airflow/Beam
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mn Large-scale data analytics

= Analytics-as-a-service
* Understand monitoring information, logs, user activities,
etc.
= Provide insightful information for optimizing business
= Big data analytics
= Handle and process big data at rest and in motion
= Key issues

= Collect/produce messages from distributed application components
and large-scale monitoring systems

= Need scalable and reliable large-scale messaging broker systems
= Require workflow and stream data processing capabilities
= |ntegrate with various different types of services and data sources
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mn Example from Lecture 4

» Multiple topics

« Amount of data per topic varies
Should not have duplicate data

[T FeEEs in database

IoT device

loT dewce
Message
Queue
loT dewce (MQTT/AMQP)

loT deV|ce

IoT device

« Should I use docker? VMs?
» Where elasticity can be applied?
» Topic/data distribution to ingest clients?
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mn Implementation atop Google cloud

@ N
Constrained Standard D e
Devices Devices Google Cloud Platform e
=) i @
d Storage .
5= o ©
ﬁ Pipelines ]
EE—
é Non-TCP i HTTPS . Q @
i e.g. BLE
é g e Applications &
Gateway e\ Presentation
L (&
Ingest 6
ﬁ é Analytics
N N \ )

Source: https://cloud.google.com/solutions/architecture/streamprocessing
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mn Example: monitoring and security

Security-related information
and metrics from distributed
customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

DST 2017 6 HAET

DistRBUTED SvsTEMs Grour  * o @



mn Cloud services and big data analytics

Operation/Management/
b Business Services
Data sources Messaging systems Stream processing Warehouse
(sensors, files, database, — (e.g., Kafka, AMQP, —— SPREIE . Analytics ]
queues, log services) MQTT) (e.g. Apex, Storm, Flink,
WSO2, Google Dataflow)

l—l

Storage and Database
(S3, InfluxDB, HDFS, Cassandra, <
MongoDB, Elastic Search etc.)

Batch data processing
systems
T (e.g., Hadoop,lAirfloW, Spark)

\ 4

Elastic Cloud Infrastructures
(VMs, dockers, OpenStack elastic resource management tools, storage)
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Recall: Message-oriented
Middleware (MOM)

= Well-supported in large-scale systems for
» Persistent and asynchronous messages
= Scalable message handling
» Message communication and transformation
» publish/subscribe, routing, extraction, enrichment
= Several implementations

Amazon SQS

Apache Kafka

JMS

DST 2017
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mn Recall: Workflow of Web services

= You learn it from the Advanced Internet
Computing course

= Typically for composing Web services from
different enterprises/departments for different
tasks

= For big data analytics and Analytics-as-a-
Service

= Tasks are not just from Web services
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, originally from LinkedIn

APACHE KAFKA
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http://kafka.apache.org/

mn Some use cases

= Producers generate a lot of realtime events
* Producers and consumers have different

orocessing speeds

= E.g. activity logging

Message queue

4
4
4
4

/’

f
+ 1 Which techniques
i can be used to
I control this?

o o e e e e e

[ Producer
(100x)

J—

m3|m2

m1

4{

Consumer
(10x)

]

= Rich and diverse types of events

= E.g.cloud-based logging

= Dealing with cases when consumers might be
on and off (fault tolerance support)
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Broker

—

Broker

Broker

l Broker

Kafka DeS|gn

Topic
Partition m m3 m2 m1l
Partition s s3 s2 sl
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Use cluster of brokers to
deliver messages

A topic consists of
different partitions

Durable messages,
ordered delivery via
partitions

Online/offline consumers

Using filesystem heavily
for message storage and
caching
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mn Messages, Topics and Partitions

* QOrdered, immutable sequence of messages

» Messages are kept in a period of time (regardless of
consumers or not)

= Support total order for messages within a partition
= Partitions are distributed among server

Partition
0

FPartition
1

Partition
2

Old

Anatomy of a Topic

0

1

2

3

4

5

&

7

8

i

90

114

—y

2 I\
_ 0
/Writes

1014
2,
_

= Mew

Source: http://kafka.apache.org/documentation.htmi
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mn consumers

= Consumer pulls the data

= The consumer keeps a single pointer indicating
the position in a partition to keep track the offset
of the next message being consumed

= Why?
—> allow customers to design their speed
—> support/optimize batching data
—> easy to implement total order over message
- easy to implement reliable message/fault tolerance
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Example of a Producer

public SimpleProducer( String url, String inputfile, String topic ) {
Properties props = new Properties();
props.put("bootstrap.servers”, url);

props.put(“client.id", "rdsea.io.training.democ"};

props.put('"key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer"};
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producer = new KafkaProducer<Integer,String=(props);

this.topic = topic;
this.inputfile =inputfile;

}

public void run() {
int messagelo = 1;
read data from file:
try {
Reader in = new FileReader(inputfile);
Iterable<CSVRecord= records = CSVFormat.RFC4180.withFirstRecordAsHeader() .parse(in);
for (CSVRecord record : records) {

JsonObject event = new JsonObject();
event .addProperty( "USERPHONE", 6645);
event .addProperty("TIME", Long.parselLong(record.get("TIME")));

event .addProperty("lat", Float.parsefFloat(record.get("LATLTUDE")));
event .addProperty("lon", Float.parseFloat(record.get("LONGITUDE")));

event .addProperty("GSM EIT ERROR RATE", Float.parseFloat(record.get("GSM BIT ERROR RATE")));
event .addProperty("GSM_SIGNAL STRENGTH", Float.parseFloat(record.get("GSM_SIGNAL _STRENGTH")));
a simple way to handle m 1g data 1s to skip the record

if (!record.get("LOC_! ") .equals("")) {

event .addProperty( LI CUR: , Float.parseFloat(record.get("LOC
1 else {

continue;
3

if (!record.get("LOC_SPEED") .equals("")) {

event.addProperty("'LOC_SPEED", Float.parseFloat(record.get("LOC_SPEED")});
} else {

continue;

CCURACY ") ))

}

String eventString = "{\"event\":
try {

+ event + "}";

producer.send(new ProducerRecord<Integer,String=(topic,messageNo,eventString)).get();
} catch (ExecutionException e) {
TODO Auto-generated catch block
e.printStackTrace();

! |
Curmtam cet mednd T o f 10ant e amn s [0 0 maceaanhla 0 U mndnnd S ed e o LY .
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n Example of a consumer

public class SimpleConsumer {
private final KafkaConsumer=Integer, String= consumer;
private final String topic;
private final int pollNr;
=] public SimpleConsumer(String url, String topic, int pollNr) {

Properties props = new Properties();
just use standard example configuration
props.put (ConsumerConfig.B00TSTRAP SERVERS CONFIG, url);
props.put (ConsumerConfig.GROUP ID CONFIG, "RDSEA Simple Consumer');
props.put (ConsumerConfig.ENABLE AUTO COMMIT CONFIG, "true");
props.put (ConsumerConfig.AUTO COMMIT INTERVAL M5 CONFIG, "l00O");
props.put (ConsumerConfig.SESSION TIMEOUT MS CONFIG, "30000");
props.put (ConsumerConfiq.KEY DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
props.put (ConsumerConfig. VALUE DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.StringDeserializer”);

consumer = new KafkaConsumer=Integer, String=(props);
this.topic = topic;
this.pollNr = pollNr;

- T
=] public void readData() {
consumer.subscribe(Collections.singletonlist(this.topic));
ConsumerRecords<Integer, String= records = consumer.poll(pollhr);
for (ConsumerRecord=Integer, String= record : records) {
System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset());
I
- T
E public static void main(String[] args) {
TODO Auto-generated method stub
if (args.length = 3) {
System.out.println("Usage: SimpleProducer kafka broker topic nr");
System.exit(0);
I

int pollNr =Integer.valuelf(args[2]);
SimpleConsumer consumer = new SimpleConsumer(args[0], args[l], pollNr);
consumer. readData() ;

- }
}
DST 2017 16
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Mﬂ Scalability and Fault Tolerance

= Partitions are distributed
and replicated among

Kafka Cluster

broker servers I—Sewer‘l—‘ Server 2

P3 P1
=  Consumers are AN

organized //X - \\

INto groups . - —

. EaCh message iS Consumer Group A Consumer Group B——
delivered
to a consumer instance http://kafka.apache.org/documentation.html#majordesignelements
In a group

= One partition is assigned
to one consumer
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mn Partitions and partition replication

= Why partitions?
= Support scalability

= enable arbitrary data types and sizes for a
topic

= enable parallelism in producing and
consuming data

= But partitions are replicated, why?
= For fault tolerance
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mn Partition Replication

producer

consumer

broker 1 broker 2 broker 3

Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013

The leader handles all read and write requests
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mn Consumer Group

= Consumer Group: a set of consumers
» |s used to support scalability and fault tolerance
= allows multiple consumers to read a topic

= In one group: each partition is consumed by only
consumer instance

= Combine ,queuing” and ,publish/subscribe” model

= Enable different applications receive data from the
same topic.

= different consumers in different groups can retrieve
the same data
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TU .
n Group rebalancing

Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html
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mn Key Questions/Thoughts

= Why do we need partitions per topic?

—> arbitrary data handling, ordering guarantees,
load balancing

= How to deal with high volume of realtime
events for online and offline consumers?

—> partition, cluster, message storage, batch
retrieval, etc.

= Queuing or publish-subscribe model?

- check how Kafka delivers messages to
consumer instances/groups
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STREAMING DATA
PROCESSING
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mn Batch, Stream and Interactive
Analytics

Batch — Ad-hoc queries on
large data sets. I/O Bound

Data

Interactive — Querying ggg};— ,l [?,j ﬁ,
historical data \\ APACHE ] mongoDB sriak
| DRILL ‘&g
\ AP ACHE .
W HBRSE &

Real Time

Streaming

Source: https://dzone.com/refcardz/apache-spark
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mn Recall: Centralized versus distributed
processing topology

Two views: streams of events or cloud of events

Complex Event Processing
(centralized processing)

Event cloud
Proces ™\

Sin

node | node] node

Usually only
gueries/patterns are written
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Streaming Data Processing
(distributed processing)

Proce
in Proces
node sina
node
Proces
sin

node

Code processing events and
topologies need to be
written



IS Structure of streaming data
processing programs

Topology of operators

External source
Compute
‘_ ______ o Data source @ Yy------ O ef;tor
Operator g -
<
Data source Compute
.— -------- --- Operator Operator

Output/Sink
Operator

Native versus micro-batching
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Data source operator: represents a source of streams
Compute operators: represents processing functions




mn Key concepts

= Structure of the data processing
= Topology: Directed Acycle Graph (DAG) of operators
= Data input/output operators and compute operators

= Accepted various data sources through different
connectors

Scheduling and execution environments
= Distributed tasks on multiple machines
= Each machine can run multiple tasks

= Stream: connects an output port from an operator to an
Input port to another operator

= Stream data is sliced into windows of data for compute
operators
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mn Implementations

* Many implementation, e.qg.
= Apache Storm
= https://storm.apache.org/

= Apache Spark
= https://spark.apache.org/

= Apache Apex
= https://apex.apache.org/

Check:

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-
processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-
processing-frameworks-part-2
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mn Apache Apex — Data Streams

= Data stream is the key abstraction

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can
be data described by a primitive data type or by a
complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements
(tuples)
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mn Example of an application in Java

* @author truong

public class VietcontrolMQTTInput extends AbstractMgttlnputOperator{
public final transient DefaultOutputPort=String= out;

@ApplicationAnnotation(name="MySecondipplication") B public VietcontrolMQTTInput() {
public class BTSApplication implements StreamingApplication this.out = new DefaultOutputPort<=();
{ out .emit est message");
String topic ="apextest"; - I
QoS qos; @0verride
B public void emitTuple(org.fusesource.mqtt.client.Message msg) {
. . . System.out.println{"topic: "+msg.getTopic());
pumiﬁ-BTSlplegaél?r.l(Lo{cr e byte[] data =msg.getPayload();
15.q0s 0o Al Mol _UNLE; String v = new String(data, Charset.forName("UTF-28") };
3 ! System.out.println{v);
@verride out.emit(v);
i public void populateDAG(DAG dag, Configuration conf) L }
B {

[ }
System.out.println{"Start the application by connecting to MQT.
MgttClientConfig btsmgttConfig = new MgttClientConfig();

I

btsmgttConfig.setHost("localhost");
btsmgttConfig.setPort(1883);

btsmgttConfig.setUserName( "guest");
btsmgttConfig.setPassword( "guest") ;
btsmgttConfig.setCleanSession(true);

[ VietcontrolMQTTInput btsInput = dag.addOperator("input”, VietcontrolMQTTInput.class);
btsInput.setMgttClientConfig(btsmqttConfig) ;
System.out.println(“sSubscribe topics");
btsInput.addSubscribeTopic(topic, qos);

[ ConsoleQutputOperator cons = dag.addOperator("console", new ConsolelutputOperator());
cons.setSilent(false) ;

System.out.println("Just create one single stream");
dag.addStream( "test", btsInput.out, cons.input).setlocality(locality.CONTAINER LOCAL);

[
s
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mn Apex - Operators

= Streaming applications are built with a set of
operators: for data and computation

Malhar Operators

Input/Output Operators u S O m e CO m m O n

data o
In Memory . 3 Protocol Read/ perato rS
(related to other

Compute Operators

: Machine Learning IeCtu reS)
Pattern Matching Stats & Math & Aldortthims
. * MQTT
Parsers Ul & Charting SFream Ougr\( & Social Media
Operators Manipulators Scripting

= AMQP
Source: https://apex.apache.org/docs/malhar/ »  Kafka
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mn Apex Operators

Ports @ Output Ports @
Upstream operators Downstream operators
Operators having directed path Operators having directed path
to opr from opr

Source: https://apex.apache.org/docs/apex-3.6/operator_development/

= Ports: for input and output data
= Data in a stream: streaming windows
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mn Processing data in operators

Different types of Windows: GlobalWindows, TimeWindows,
SlidingTimeWindows, etc.

| Component:setup(Context context) | | Component:isetup(Context context) |
| Dperatur::beginWinriiﬂwn:Iung windowld) ] | E}peratur::beginWin::iﬂw{Iﬂng windowld) ]
[ InputOperator::emitTuples() ]J { |HPUtF'ﬂﬂ;IPF0EESS{} ]J
[Dperatur::er;dWmduw{} ] [Dperatﬂr::e;mvﬁnduw{} ]
[Campﬂnent:r:teardﬂwn{}l ] {Camponent::teardﬂwn{} ]
Flow for Input Adapters Flow for Generic Operators

and Output Adapters

Source: https://apex.apache.org/docs/apex/operator_development/
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mn Operators Fault tolerance

= Checkpoint of operators: save state of
operators (e.qg. into HDFS)

= @Stateless no checkpoint

= Check point interval:
CHECKPOINT_WINDOW_ COUNT

= Recovery
= At least once
= At most once
= Exactly once
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mn Fault tolerance - Recovery

= Atleast once
= Downstream operators are restarted
= Upstream operators are replayed

= At most once

= Assume that data can be lost: restart the operator
and subscribe to new data from upstream

= Exactly once

= https://www.datatorrent.com/blog/end-to-end-exactly-
once-with-apache-apex/
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mn Execution Management

= Using YARN for execution tasks
= Using HDFS for persistent state

Node

@

STRAM

\
\
Node ®
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mn Understand YARN/Hadoop to
understand Apex operator execution
management

MapReduce Status ——»
Job Submission
Mode Status

Resource Reguest .. -......

Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
DST 2017 37 il
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mn Scalability

» Locality configuration for deployment of
streams and operators

= Affinity and anti-affinity rules

= Possible localities:
= THREAD LOCAL (intra-thread)
= CONTAINER_LOCAL (intra-process)

= NODE_LOCAL (inter-process but within a Hadoop
node)

= RACK LOCAL (inter-node)
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IS Example of Partitioning and
unification

=  Dynamic Partition . . . .
=  Partition operators

Physical DAG with (1a, 1b, 1c), and (2a, 2b): Bottleneck on intermediate Unifier

=  Dynamic: specifying
when a partition should

be done h 9
= Unifiers for combining “@
results (reduce) e @

= StreamCodec

=  For deciding which
tuples go to which
partitions

Physical DAG with (1a, 1b, 1c), and (2a, 2b): No bottleneck

» Using hashcode and
masking mechanism

Source:
https://apex.apache.org/docs/apex/application_development/#partitioning
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mn Exercise

How to make sure no duplication results when we
recover End-to-End Exactly Once?

How to use hash and masking mechanism to
distributed tuples?

How to deal with data between operators not in a
CONTAINER _LOCAL orin THREAD LOCAL
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ADVANCED
WORKFLOWS/DATA PIPELINE
PROCESSING
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mn Use cases

= Access and coordinate many different compute
services, data sources, deployment services,
etc, within an enterprise, for a particular goal

* Implementing complex ,business logics” of your
services

= Analytics-as a service: metrics, user activities
analytics, testing, e.g.

= Analytics of log files (generated by Aspects in
Lecture 3)

= Dynamic analytics of business activities
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Workflow and Pipeline/data
workflow

= Workflows: a set of coordinated activities

= Generic workflows of different categories of tasks
» Data workflows - data pipeline

,a pipeline is a set of data processing elements connected in

series, where the output of one element is the input of the next
one”

Source:

= We use a pipeline/data workflows to carry out a
data processing job

= But analytics have many more than just data
processing activities.
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https://en.wikipedia.org/wiki/Pipeline_(computing)

Example of Pipeline in Google
Dataflow

JAVA

public static void main(String[] args) {
// Create a pipeline parameterized by commandline flags.
Pipeline p = Pipeline.create(PipelineOptionsFactory.fromArgs(arg));

p.apply(TextIO.Read.from("gs://...")) // Read input.
.apply(new CountWords()) // Do some processing.
.apply(TextIO.Write.to("gs://...")); // Write output.

// Run the pipeline.

p.run{);

}

https://cloud.google.com/dataflow/model/pipelines#a-simple-example-pipeline
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IS Data analytics workflow execution

models

] —

Execution Engine

DST 2017
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Your are In a situation:

= Many underlying distributed processing
frameworks
=  Apex, Spark, Flink, Google

=  Work with different underlying engines
= \Write only high-level pipelines
= Stick to your favour programming languages
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mn Apache Beam

» Goal: separate from pipelines from backend
engines

Read data Post-processing] ( Store analysis
analytics result J 'L result

¢

APACHE

park

M\ Apache Apex™
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mn Appache Beam

= https://beam.apache.org/

= Suitable for data analysis processes that can be
divided into different independent tasks
= ETL (Extract, Transform and Load)
= Data Integration

= EXxecution principles:

= Mapping tasks in the pipeline to concrete tasks that
are supported by the selected back-end engine

= Coordinating task execution like workflows.
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mn Basic programming constructs

= Pipeline:
= For creating a pipeline
= PCollection
= Represent a distributed dataset

= Transform
[Output PCollection] = [Input PCollection] | [Transform]

» Possible transforms: ParDo, GroupByKey, Combine,
etc.

DST 2017 49



A simple example with Google
Dataflow as back-end engine

import apache beam as beam
from apache_beam.options.pipeline options import PipelineOptions

p = beam.Pipeline(options=PipelineOptions())

entries = p | 'ReadHadoopResult' =>> beam.io.ReadFromText('gs://.../ElectricityAlarme
i/felectricity _alarm_frequency-2017-05-11-80-vn.csv')
class ExtractAlarmFrequency(beam.DoFn):
def process(self, elements):
return ....
frequency = entries| beam.ParDo(ExtractAlarmFrequency())

frequency | 'write' >> beam.io.WriteToText('gs://...[JElectricityAlarm’)
result = p.run()

result.wait until finish()
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But what if you need diverse types of
tasks with various back-end
services?

- Workflow systems
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mn Example of using workflows

Security-related informatio
and metrics from distribut
customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html
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Representing and programming
workflows/data workflows

= Programming languages
» General- and specific-purpose programming
languages, such as Java, Python, Swift

» Descriptive languages

» BPEL and several languages designed for
specific workflow engines
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mn Airflow from Airbnb

* Features
= Dynamic, extensible, scalable workflows
= Programmable language based workflows
= Write workflows as programmable code

= Good and easy to study to understand concepts
of workflows/data pipeline
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http://airbnb.io/projects/airflow/

mn Airflow Workflow structure

= Workflow is a DAG (Direct Acyclic Graph)

= A workflow consists of a set of activities
represented in a DAG
= Workflow and activities are programed using
Python — described in code
= Workflow activities are described by Airflow
operator objects

= Tasks are created when instantiating operator
objects

DST 2017 55



mn Airflow from Airbnb

* Rich set of operators

= So that we can program different kinds of tasks and
Integrate with different systems

= Different Types of operators for workflow activities

= BashOperator, PythonOperator, EmailOperator,
HTTPOperator, SglOperator, Sensor,

= DockerOperator, HiveOperator,
S3FileTransferOperator, PrestoToMysqlOperator,
SlackOperator
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mn Example for processing signal file

Airflow
GUI

UserApp

4

worker Computing servers

j Notification MOTT brok
[download_signal_file]—-[ analyticsinternelusage]» sendresults rL Service - Q roker

\ "" \ N T (REST, NodelS)

—f -.."'-.

| -
I Localfile system T~ 4.
: (e.g. /opt/data/airflow) T~ ElasticSearch
y
[ Blob File Server ]
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mn Example for processing signal file

DAG_NAME = 'signal upload file'

default_args = {
‘owner': 'hong-linh-truong',
'depends_on_past': False,
'start_date': datetime.now(),

1
dag = DAG(DAG_NAME, schedule interval=None, default_args=default_args)
|

stations=["stationl", "stationZ"]

def checkSituation(**kwargs):
f=f
=t
return t

downloadlogscript="curl file: home/truong/myprojects/mygit/rdsea-mobifone-training/data/opensignal /sample-0ct182016.csv -0 fopt/data/air

|t_downloadlogtocloud= BashOperator(
task_id="download signal_file",
bash_command=downloadlogscript,
dag = dag
)

t_analytics= BashOperator(
task_id="analyticsinternetusage",
bash_command="/usr/bin/python /home/trucng/myprojects/mygit/rdsea-mobifone-tjraining/examples/databases/elasticsearch/uploader/src/uploa
dag = dag
)
t_sendresult =SimpleHttpOperator(
task_id='sendresults’',
method='FOST',
http_conn_id='stationl’,
endpoint="api/update/credit’,

data=json.dumps({"userphone": "B66412345","credit":10}),
headers={"Content-Type": "application/json"},
dag = dag

)

t_analytics.set_upstream(t_downloadlogtocloud)
t_sendresult.set_upstream(t_analytics)
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&+ Airflow  DAGs 3 rowse Admin~  Docs~ 1514UTC O

DAGs

LT

Show :l entries Search:
e DAG Schedule Owner Recent Statuses @ Links
©® |fBF  example_bash_operator m airflow PR WA= S+E=EDC
©® |[fOF  example_branch_dop_operator_v3 airflow PR IWASS+E=EDC
©® |fBF  example_branch_operator airflow PR IWA=SE=EC
©® [TOf  example_hitp_operator airflow PR IWASS+E=EDC
@ [FBF  example passing params_via_test command airflow PR IWA=SE=EC
® [TBF  example_python_operator m airflow PR WA= SE=EC
©® |fBF  example_short_circuit_operator airflow PR WA= S+E=EC
O [TBF  example_skip_dag airflow PR WA= SE=EC
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Elasticity control for
Workflows/Data Flows

= How to scale the workflows?

= Scheduling in a large resource pool (e.g., using
clusters)

= Elasticity controls of virtualized resources
(VMs/containers) for executing tasks

= Distributed Task Queue, e.g. Celery

Job description/request sent via queues
Results from jobs can be stored in some back-end
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http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

Il Other systems, e.g., AWS Data
Pipeline

Task: launch
data analysis

Task: copy
log files

Amazon EC2 Amazon S3 Amazon EMR

Components

- "CopyActivity",

45
§

-
{

"name" : "InputData”,

"type" : "MySqlDataNode”, {@CopyData_1_2012-08-25T17.00:00_Attempt=3

i
i
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http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide
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mn Summary

* Analytics-as-a-service for large-scale distributed
applications and big data analytics require different set
of tools

» Kafka, Apache Apex and Airflow are just some of the
key frameworks
» There are a lot of tools

= Need to understand common concepts and
distinguishable features

= Select them based on your use cases and application
functionality and performance requirements

=  [EXxercises:

= asmall application utilizing Kafka/MQTT and Apache Apex

= Log analytics using AOP and Kafka and Airflow
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mn Further materials

http://www.corejavaguru.com/bigdata/storm/stream-groupings

https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-
documentdb/
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https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/

https://storm.apache.org/

STREAMING ANALYSIS WITH
APACHE STORM
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mn Apache Storm — Key concepts

= Originally from Twitter
= Data
= Structure of the data processing
= Topology
= Spouts
= PBolts
= Stream groupings
= Scheduling and execution environments
= Processes, Executors and Tasks
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mn Apache Storm — Data Streams

= Data stream is the key abstraction

Recall:
Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can
be data described by a primitive data type or by a
complex data type, a serializable object, etc.

Apache Storm: a stream is ,n unbounded sequence of
tuples” = data units = tuples
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Example of data stream

System to capture
data for vehicles
crossing the
checkpoint.

v

FileListenerSpout

LogFile

[AB123, 90, NCity]

[CD234, 60, SCity]

[PQ453, 70, NCity]

[AB123, 90, NCity]

[CD234, 60, SCity]

[PQ453, 70, NCity]

BOLT

Source: http://www.drdobbs.com/open-source/easy-real-time-big-data-analysis-using-s/240143874
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BEEl Structure of data processing
program

Topology

External source

\\:} BOIt

= Spout: represents a source of streams

» Read tuples from a external source and feed the
tuples to the topology

= Bolt: represents processing functions
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Spouts and Bolts

Spouts Bolts
= Can emit multiple = Can emit multiple
streams streams
= unreliable/reliable = Main methods
= Main APIs execute (Tuple 1nput)
nextTuple () prepare (Map stormConft,
fail (Object msgld) TopologyContext
ack (Object msgId) context,
OutputCollector
collector)
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BEE Structure of data processing
program

Worker Process
setSpout (String id,

IRichSpout spout, Number

parallelism hint) r (1thread)
setBolt (String id,

IRichBolt bolt, Number :

parallelism hint)
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mn Stream Grouping (1)

Bolt Bolt

Stream grouping

= Stream grouping defines how tuples are
streamed to Tasks in Bolts

= Examples:

= Shuffle grouping, Fields grouping, Partial Key

grouping, All grouping, Global grouping, None
grouping, Direct grouping, Local or shuffle grouping
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mn Stream grouping (2)

bota Shuffle s s Al Ras

bolt A Fields boit B bolt A Global bolt B

O feid X O

O
O fold Y \O

Soure: https://www.safaribooksonline.com/blog/2013/06/11/your-guide-to-storm/
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ISl Example of programming stream
grouping

TopologyBuilder builder = new TopologyBuilder () ;

builder.setSpout ("spout", new RandomSentenceSpout (),
2)

builder.setBolt ("split", new SplitSentence(),
8) .shuffleGrouping ("spout") ;

builder.setBolt ("count", new WordCount (),
12) .fi1eldsGrouping ("split", new Fields ("word")):;

Source: https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_storm-user-
guide/content/storm-stream-groupings.htmi
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Integration example

1 | Flexible 2 Data failover 3 | Reaktime, fault-folerant, Guaranteed
data input snapshots scalable, in-stream processing data delivery

N

N

HTTP oo R @ oy | . —_— APPLICATION
LOGS
..... ﬁ 2 e —— NOSQL
DATABASE
o
-
DATA PARTNERS <
P
&
----- — Bl HADOOP
BATCH UPLOAD o
CUSTOM
CONNECTORS B WIY 727 T T ﬁ """""" RDBMS

http://blog.infochimps.com/2012/10/30/next-gen-real-time-streaming-storm-kafka-integration/
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Thanks for
your attention

Hong-Linh Truong
Distributed Systems Group, TU Wien
truong@dsg.tuwien.ac.at

@linhsolar
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