
Distributed Architecture, Interaction, and

Data Models

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong

Twitter: @linhsolar

DST Summer 2018, Lecture 1

DST 2018 1

DST 2018 2

Ack:

Some slides are based on previous lectures in SS 2013-2015

Outline

 Overview

 Key design concepts

 Architecture styles and Interaction Models

 Data models

 Optimizing interactions

 Summary

DST 2018 3

DST Lectures versus Labs

 Cover some important topics in the current

state-of-the-art of distributed systems

technologies
 We have focusing topics

 Few important parts of the techniques for

your labs
 Most techniques you will learn by yourself

 Stay in the concepts: no specific

implementation or programming

languages
DST 2018 4

DST Lectures versus Labs

DST 2018 5

 It is not about Java or Enterprise Java

Beans!
 The technologies you learn in the lectures are for

different applications/systems

Have some programming questions?

DST 2018 6

Or send the questions to the tutors

Where is our focus?

DST 2018 7

Full stack developer
Figure source - https://medium.com/dev-

bits/why-full-stack-development-is-too-good-

for-you-in-2017-3fd6fe207b34

Backend versus front-end
Figure source -

https://www.upwork.com/hiring/development/a

-beginners-guide-to-back-end-development/

DST topics:

Backend services in multi-

cloud environments

DST topics:

Communications

with Front-end

Non DST

topics

Front-end

TRENDS & KEY DESIGN

CONCEPTS

DST 2018 8

DST 2018 9

 On-premise servers  public clouds and on-premise

clouds

 Static, small infrastructures  large-scale virtualized

dynamic infrastructures

 Heavy monolithic services  microservices

 Server  Serverless Architecture

 Data  Data, Data and Data

Rapid changes in application requirements

and technologies for distributed applications

Laptop

Server

Server

A not so complex distributed

application

DST 2018 10

Database

(MySQL)

Shopping

Service

Web Browser

Internet

Figure source: https://docs.oracle.com/javaee/7/tutorial/overview003.htm

Technologies Distribution

Figure source:

http://drbacchus.com/files/se

rverrack.jpg

A complex, large-scale distributed

system

DST 2018 11

Figure source: http://uidai.gov.in/images/AadhaarTechnologyArchitecture_March2014.pdf

What we have to do?

DST 2018 12

selecting the right technologies as well as design

methodologies

 Data

 Communication

 Processing

 Visualization

 Routing

 Load balancing

 Monitoring & Logging

 Etc.

 Development

 Deployment

 Testing

 Monitoring

 Performance analysis

 Teamwork

System/application business logic Development and operation tasks

Deliver

Understand the requirements

DST 2018 13

 Data

 Structured, semi-structured or unstructured data?

 Do we need data being persistent for several years?

 Is accessed concurrently (from different applications)?

 Mostly read or write operations?

 Data intensive or computation intensive application

This course is not about big data but distributed applications today have to

handle various types of data at rest and in motion!

Understand the requirements

DST 2018 14

 Physically distributed systems

 Different clients and back-ends

 On-premise enterprise or cloud systems?

 Complex business logics

 Complexity comes from the domain more than

from e.g., the algorithms

 Integration with existing systems

 E.g., need to interface with legacy systems or

other applications

 Scalability and performance limitation

 Etc.

How do we build distributed

applications

DST 2018 15

 Using fundamental concepts and technologies

 Abstraction: make complicated things simple

 Layering, Orchestration, and Chorography: put things together

 Distribution: where and how to deploy

 Using best practice design and performance patterns

 Principles, e.g., Microservices Approach

Figure source:Sam Newman, Building

Microservices, 2015

Abstraction

DST 2018 16

 APIs abstracting complex communications and

interactions

 Interfaces abstracting complex functions

implementation

Deal with technical complexity by hiding it behind clear

simple interfaces

Layering

DST 2018 17

Deal with maintainability by logically structuring

applications into functionally cohesive blocks

Benefits of Layering

 You can understand a single

layer without knowing much

about other layers

 Layers can be substituted with

different implementations

 Minimized dependencies

between layers

 Layers can be reused

Downsides of Layering

 Layers don’t encapsulate all

things well: do not cope with

changes well.

 Extra layers can create

performance overhead

 Extra layers require

additional development

effort

Examples: abstraction and layering

side-by-side

DST 2018 18

Figure source: http://docs.jboss.org/hibernate/orm/5.1/userguide/html_single/Hibernate_User_Guide.html

Partitioning functionality & data

DST 2018 19

 Why?

 Breakdown the complexity

 Easy to implement, replace, and compose

 Deal with performance, scalability, security,

etc.

 Support teams in DevOps

 Cope with technology changes

Enable abstraction and layering/orchestration, and

distribution

Example of functional and data

partitioning

DST 2018 20

Figures source: http://queue.acm.org/detail.cfm?id=1971597

Partitioning functionality: 3-

Layered Architecture

DST 2018 21

 Presentation
 Interaction between user and software

 Domain Logic (Business Logic)
 Logic that is the real point of the system

 Performs calculations based on input and stored data

 Validation of data, e.g., received from presentation

 Data Source
 Communication with other systems, usually mainly

databases, but also messaging systems, transaction

managers, other applications, ...

Presentation

Domain Logic

Data Source

Orchestration and Choreography

DST 2018 22

Sensor Data

Analytics

Energy Optimization

Service

Emergency Service

Equipment

Maintenance Service

Sensors Broker

Near Realtime

Analysis

Historical Data

Archiving
Choreography

Orchestration

Distribution: where to run the

layers?

DST 2018 23

Figure source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

More in lecture 4

Distribution: OS, VM, Container, or

Function-as-a-Service?

DST 2018 24

Source: The XEN Hypervisor (http://www.xen.org/)

Distribution: edge systems, core

network backbone or data centers?

DST 2018 25

Figure source:

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-

_introductory_technical_white_paper_v1%2018-09-14.pdf

Figure source:

https://techcrunch.com/2018/02/08/chinese-

police-are-getting-smart-glasses/

Programming

DST 2018 26

Source: https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages

DST 2018 27

What is the downside of functional

and data partitioning?

ARCHITECTURE STYLES AND

INTERACTION MODELS

DST 2018 28

Process boundary
Process boundary

Basic direct interaction

DST 2018 29

 Using abstraction, we hide the complexity within these boxes

 But we need to integrate between two components, enabling them

communicate across process boundaries

 In the same host, in the same application in different hosts, in

different applications

 How would they exchange data/commands? e.g., Synchronous

or asynchronous communication

 Complex in context of complex distributed systems

Client Server

you
Remoting Objects/Procedures/Services/Servers

Basic interaction models

 Large number of communication protocols and

interfaces

 Interaction styles, protocols and interfaces

 REST, SOAP, RPC, Message Passing, Stream-

oriented Communication, Distributed Object models,

Component-based Models

 Your own protocols

 Other criteria

 Architectural constraints

 Scalability, performance, adaptability, monitoring,

logging, etc.

DST 2018 30

Component Based Systems

DST 2018 31

 Components:

 Reusable collections of objects

 Clearly defined interfaces

 Focus on reuse and integration

 Implementations: Enterprise Java Beans, OSGi,

System.ComponentModel in .NET

Service-Oriented Systems

DST 2018 32

 Service-oriented Computing:

 Applications are built by composing (sticking

together) services (lego principle)

 Services are supposed to be:

Standardized,

Replaceable,

Reusable/Composable,

Stateless

Components vs. Services

DST 2018 33

Components

 Tight coupling

 Client requires library

 Client / Server

 Extendable

 Fast

 Small to medium

granularity

 Buying components

and installing them on

your HW

Services

 Loose coupling

 Message exchanges

 Policy

 Peer-to-peer

 Composable

 Some overhead

 Medium to coarse

granularity

 Pay-per-use on-

demand services

REST

 REST: REpresentational State Transfer

 Is an architectural style! (not an implementation
or specification)

 See Richardson Maturity Model
(http://martinfowler.com/articles/richardsonMaturityM
odel.html)

 Can be implemented using standards (e.g., HTTP,
URI, JSON, XML)

 Architectural Constraints:
 Client-Server, Stateless, Cacheable, Layered

System, Uniform Interface

DST 2018 34

Example of REST Interactions

 Important concepts
 Resources

 Identification of Resources

 Manipulation of resources through their representation

 Self-descriptive messages

 Hypermedia as the engine of application state (aka. HATEOAS)

DST 2018 35

GET (list/retrieve)

PUT (update/create)

POST (create/update)

DELETE (remove)

Web Service

URIi: Resourcei

Web

Service

Client

URIk: Resourcek

Recall: Remote Procedure Call

Systems

DST 2018 36

 Server provides procedures that clients can call

 Most RPC-style middleware follows a small set of architectural

principles

 Strongly tied to specific platforms

 Why is it relevant in complex distributed systems?

gRPC as state-of-the-art framework

DST 2018 37

http://www.grpc.io/

What kind of benefits we get, compared with REST

Interactions and data exchange formats?

Server-sent Events and WebSocket

 Server-sent Events

 Remember polling results from servers?

 Server pushes data to clients through HTTP when

the clients connect to the server.

 WebSocket (https://tools.ietf.org/html/rfc6455)

 Remember socket?

 Two ways of communication through TCP

 Example, socket.io (more than just a typical

WebSocket)

DST 2018 38

For which use cases/scenarios we can use them?

WebHook

URL accepting HTTP POST

DST 2018 39

Source: https://stripe.com/docs/webhooks

Message Passing/Message-

Oriented Communications

DST 2018 40

Sender Receiver
Send Message Receive Message

Receive Reply
Send Reply

More in lecture 2 (fundamental) and lecture 5 (large-scale)

 Servers and clients communicate by exchanging messages

m3 m2 m1 m3 m2 m1

time

client

Streaming

data

server

When the

transmission

of m2

completes

End-to-end delay

Stream-oriented communication
When delivery times matter!

Complex interactions

 One-to-many, Many-to-one, Many-to-One

 Message Passping Interface

 Public/Subscribe, Message-oriented Middleware

 Shared Repository

 Websocket (also support broadcast)

 Application/Systems specific models

DST 2018 41

Client Client Client Client

Repository

add

retrieve delete
listen

notify

Amazon S3

Producer

Consumer

Consumer

Consumer

Pub/Sub

Serverless

 Most of the time we need to build and setup

various services/server

 But with the cloud and PaaS providers  we do

not have to do this

 Serverless computing:

 Function as a service

 Examples
 AWS Lambda

 Google Cloud Function (beta - https://cloud.google.com/functions/)

 IBM OpenWhisk

 https://serverless.com/

DST 2018 42

Serverless

DST 2018 43

 Key principles

 Running code without your own

back-end server/application

server systems

 Tasks in your application:

described as functions

 With a lifecycle

 Functions are uploaded to FaaS

and will be executed based on

different triggers (e.g., direct call

or events)

 Event-driven triggers!
Check: https://martinfowler.com/articles/serverless.html

Source: http://docs.aws.amazon.com/lambda/latest/dg/with-s3-

example.html

Example: chat

DST 2018 44

From Anton Chernysh, Source: https://medium.com/devoops-and-universe/serverless-

slack-bot-on-aws-vs-azure-getting-notified-instantly-ab0916393e1d

Case study serverless Deloitte-

Amtrak

DST 2018 45

Source: https://www.slideshare.net/GaryArora/leapfrog-into-serverless-a-deloitteamtrak-case-study-serverless-conference-2017/

DST 2018 46

Depending on the requirements: we can build

everything or build few things and manage the

whole system or not.

 We need to carefully study and examine

suitable technologies/architectures for our

complex distributed applications

A big homework:

Microservices approach versus serverless approach

DATA MODELS

DST 2018 47

Data Storage Models

DST 2018 48

 Relational Model

 Traditional SQL model

 Key-Value Model

 Data is stored as simple list of keys and values (hashtable

style)

 Column-oriented Model

 Data is stored in tables, but stored column-wise rather than

row-wise

 Document-oriented Model

 Data is stored in (schemaless) documents

 Graph-oriented Model

 Data is stored as an interconnected graph

NoSQL versus SQL

Relational Model

DST 2018 49

 Implemented as collection of two-dimensional tables

with rows and columns

 Powerful querying & strong consistency support

 Strict schema requirements

 E.g.: Oracle Database, MySQL Server, PostgreSQL

Key-Value Model

DST 2018 50

 Basically an implementation of a map in a programming

language

 Values do not need to have the same structure (there is

no schema associated with values)

 Primary use case: caching

 Simple and very efficient, fast (e.g., in memory storage)

 Querying capabilities usually very limited

Oftentimes only “By Id” pattern

 E.g.:

 Memcached, Riak, Redis

Collection

Document-oriented Model

DST 2018 51

 Simple, comparable to key-value

 All values are schema-free and typically complex

 Primary use cases: managing large amounts of unstructured

or semi-structured data

 Sharding and distributed storage is usually well-supported

 Schema-freeness means that querying is often difficult and/or

inefficient

 E.g.:, CouchDB, MongoDB

Data Object JSON Document

Document

Document
A simple analogy

Example: MongoDB with mLab.org

DST 2018 52

Complex Relationships?

DST 2018 53

How do we represent such relationships with documents?

Column-oriented data model

DST 2018 54

 Data Model

 Table consists of rows

 Row consists of a key and one or more columns

 Columns are grouped into column families

 A column family: a set of columns and their values

 Systems: Hbase, Hypertable, Cassandra

Rows are allowed to have different columns

Examples: HBase

DST 2018 55

Source: http://hbase.apache.org/book.html#datamodel

Graph-oriented Model

DST 2018 56

 Data relationships as first-class citizens

 Data is stored as a network (graph)

 Primary use cases: whenever one is more interested in

the relations between data than the data itself (for

instance, social media analysis)

 Highly connected and self-referential data is easier to map to a

graph database than to the relational model

 Relationship queries can be executed fast

 E.g.: Neo4J, Orient DB, ArangoDB

 Many of them are actually multi-model (combine graph,

document, key/value, etc., models)

Examples wih Neo4j

DST 2018 57

Source: Manfred Halper, Master thesis, TU Wien,

https://github.com/rdsea/bigdataincidentanalytics

Blockchain as a database

DST 2018 58

Bigchain DB: https://www.bigchaindb.com/

Source:

https://www.economist.com/news/briefing/21677228-technology-

behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-

build-dependable

https://www.bigchaindb.com/

Key issues: we need to use many

types of databases/data models

DST 2018 59

Example - Healthcare
 Personal or hospital context

 Very different types of data for healthcare

 Electronic Health Records (EHRs)

 Remote patient monitoring data (connected

care/telemedicine)

 Personal health-related activities data

 Combined with other types of data for

insurance business models

Question for design thinking

DST 2018 60

If you have to build a system that includes many

individuals connected through a SocialNetwork

for discussing products they sell and buy and

they have a lot of different products to sell

How would you select database technologies for

your implementation?

Accessing and Processing Data

DST 2018 61

 Component accesses data

 Get, store, and process

 Data is in relational model, documents,

graph, etc.

 Main problems

 Programming languages are different 

Mapping data into objects in programming

languages

 Distributed and scalable processing of data

(not in the focus of this lecture)

Data Access API Approach

DST 2018 62

 Data access APIs can be built based on well-defined

interfaces

 Currently mostly based on REST

 Help to bring the data objects close to the programming

language objects

Relational

Database

(e.g. MySQL)

REST APIREST API

Object-based

storage

(e.g. S3)

Document-

based

Database

Relational

Database

Service API Tool-specific API

SQL-based API

DST 2018 63

 Leverage SQL as the language for

accessing data

 Hide the underlying specific technologies

Source: Programming Hive, Edward Capriolo, Dean Wampler, and Jason

Rutherglen

Object-Relational/Grid/Document

Data Mapping (ORM/OGM/ODM)

DST 2018 64

Conceptual mismatch, especially with

relational database

Programming Language Objects

Native Database Structure

(e.g., relations)

What you want to avoid

DST 2018 65

Source: https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Not just about security but tedious effort on coding

Solution (1)

DST 2018 66

Two subproblems:

1. How do represent data in the application?

2. How to map between data storage and

application?

Build an abstraction layer that represents the database in

the application

Solution (2)

DST 2018 67

 Technologies

 Java Persistence API

 Hibernate ORM (relational database)

 Hibernate OGM (NoSQL)

 Mongoose (for MongoDB)

 Methodology: design patterns

 http://martinfowler.com/eaaCatalog/index.html

Data-Related Architectural Patterns

DST 2018 68

 See http://martinfowler.com/eaaCatalog/index.html

 Mapping DB Data to Code

 Code that wraps the actual communication between

business logics and data store

 Required to „fill“ e.g., the domain model

 Goals

 Access data using mechanisms that fit in with the

application development language

 Separate data store access from domain logic and

place it in separate classes

http://martinfowler.com/eaaCatalog/index.html

Data Source Architectural Patterns

 Row Data Gateway

 Based on table structure. One instance per row returned by a query.

 Table Data Gateway
 Based on table structure. One instance per table.

 Active Record
 Wraps a database row, encapsulates database access code, and adds business

logic to that data.

 Data Mapper
 Handles loading and storing between database and Domain Model

DST 2018 69

Object-Relational Structural

Patterns

DST 2018 70

Association Table Mapping

Class Table Inheritance

Source: http://martinfowler.com/eaaCatalog/classTableInheritance.html

Source: http://martinfowler.com/eaaCatalog/associationTableMapping.html

Solutions/Strategies:

http://docs.oracle.com/javaee/6/tutorial/doc/bnbqn.html#bnbqr

http://www.javaworld.com/article/2077819/java-se/understanding-jpa-part-2-

relationships-the-jpa-way.html

http://docs.oracle.com/javaee/6/tutorial/doc/bnbqn.html#bnbqr

Object-Relational Behavioral

Patterns: Lazy Loading

DST 2018 71

Source: https://martinfowler.com/eaaCatalog/lazyLoad.html

Do the loading as latest as possible

Lazy Loading

DST 2018 72

 For loading an object from a database it's

handy to also load the objects that are related

to it

 Developer does not have to explicitly load all objects

 Problem

 Loading one object can have the effect of loading a

huge number of related objects

 Lazy loading interrupts loading process and

loads data transparently when needed

Lazy Loading Implementation

Patterns

DST 2018 73

 Lazy Initialization

 Every access to the field checks first to see if it's null

 Value Holder

 Lazy-loaded objects are wrapped by a specific value

holder object

 Virtual Proxy

 An object that looks like the real value, but which

loads the data only when requested

 Ghost

 Real object, but in partial state

 Remaining data loaded on first access

Lazy Loading Example - Hibernate

DST 2018 74

@Entity

public class Product {

@OneToMany(mappedBy="product“, fetch = FetchType.LAZY)

//or FetchType.EAGER for edger loading

public Set<Contract> getContracts() {

...

}

}

How can we achieve the implementation? using proxy

technique (Lesson 3)

OPTIMIZING INTERACTIONS

DST 2018 75

Interactions?

DST 2018 76

Client Service

Object Remote

Object

Application Remote

Function

Dependencies

Object

Service

Object

Object

Object

Service

Optimizing Interactions

DST 2018 77

 Interactions between software components and

within them

 Scale in: increasing server capability

 Load balancer

 Scale out

 Asynchronous communication

 More in lectures 4&5

 Data sharding

 Connection Pools

 Etc.

Scale out

DST 2018 78

Figure source: http://queue.acm.org/detail.cfm?id=2560948

More in Lecture 4

Load balancing

DST 2018 79

Figure source: http://queue.acm.org/detail.cfm?id=1971597

Data Sharding

DST 2018 80

Soure: https://docs.mongodb.org/manual/core/sharding-introduction/

Need also

Routing, Metadata

Service, etc.

Prevent too many accesses?

DST 2018 81

Client Service
API Management

Service

Code: http://www.django-rest-

framework.org/api-

guide/throttling/#how-throttling-is-

determined

Client Service
100000 requests/s

Other patterns

 See the supplement slides

 Understanding how to use communications to

implement certain patterns

 Polling

 Fire and forget

 Callback

DST 2018 82

Summary

DST 2018 83

 Understand the size and complexity of your distributed

applications/systems

 Pickup the right approach based on requirements and

best practices

 Architecture, interaction, and data models are strongly

inter-dependent

 There are a lot of useful design patterns

 Distribution design and deployment techniques are

crucial  cloud models

 Embrace diversity: Not just distributed applications with

relational database!

Other references

DST 2018 84

 Sam Newman, Building Microservices, 2015

 http://de.slideshare.net/spnewman/principles-of-microservices-ndc-2014

 Markus Völter, Michael Kirchner, Uwe Zdun: Remoting Patterns – Foundation of Enterprise, Internet and

Realtime Distributed Object Middleware, Wiley Series in Software Design Patterns, 2004

 Thomas Erl: Service-Oriented Architecture – Concepts, Technology and Design, Prentice Hall, 2005

 Roy Fielding’s PhD thesis on REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 Roy Fielding’s blog entry on REST requirements: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-

hypertext-driven

 Martin Fowler’s blog entry on RMM: http://martinfowler.com/articles/richardsonMaturityModel.html

 Martin Fowler: Patterns of Enterprise Application Architecture

 Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: a distributed storage system for structured data.

In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation - Volume 7

(OSDI '06), Vol. 7. USENIX Association, Berkeley, CA, USA, 15-15

 Eric Redmond, Jim R. Wilson: Seven Databases in Seven Weeks – A Guide to Modern Databases and the

NoSQL Movement

 Polyglott persistence: http://martinfowler.com/bliki/PolyglotPersistence.html

 CAP: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

 Eventual consistency: http://queue.acm.org/detail.cfm?id=1466448

 https://hackernoon.com/blockchains-versus-traditional-databases-c1a728159f79

 https://www.coindesk.com/information/what-is-the-difference-blockchain-and-database/

 https://www.oracle.com/cloud/blockchain/index.html#compare

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/bliki/PolyglotPersistence.html

85

Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at

http://www.infosys.tuwien.ac.at/staff/truong

DST 2018

