mu DST Summer 2018, Lecture 1

Distributed Architecture, Interaction, and
Data Models

Hong-Linh Truong
Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong
Twitter: @linhsolar

DST 2018 1

DST 2018

Ack:

Some slides are based on previous lectures in SS 2013-2015

mn Outline

= Overview

= Key design concepts

= Architecture styles and Interaction Models
= Data models

= Optimizing interactions

= Summary

DST 2018 3

mn DST Lectures versus Labs

= Cover some important topics in the current
state-of-the-art of distributed systems
technologies
= We have focusing topics
= Few Important parts of the techniques for
your labs
= Most techniques you will learn by yourself
= Stay In the concepts: no specific
Implementation or programming

languages
DST 2018 4

mn DST Lectures versus Labs

It IS not about Java or Enterprise Java

Beans!

= The technologies you learn in the lectures are for
different applications/systems

Enterpriéooreitportkindbook

SERVER#LISS
FRAMEWORK
VERSION 1.0 $ npnm install serverless
Build auto-scaling, pay-per-execution, ' serverless c

event-driven apps on AWS Lambda

[> WATCH THE VIDEO

[El READ THE DOCS

O'REILLY" Arun Gupla
¢ e Material

DST 2018 5

Have some programming questions?

< stackoverflow

Stack Overflow is a community of 4.7 Join the Stack Overflow community to:
million programmers, just like you,
helping each other. @ Q

Join them; it only takes a minute:
Answer and help Get recognized for your

Ask programming
guestions your peers expertise

Or send the guestions to the tutors

DST 2018 6

mn Where is our focus?

Backend versus front-end

Figure source -
https://www.upwork.com/hiring/development/a
-beginners-guide-to-back-end-development/

BACK-END DEVELOPMENT & FRAMEWORKS IN work"

SERVER SIDE SOFTWARE

THE FRONT END

FRAMEWORKS are libraries
of server-side programming
languages that construct the
back-end structure of a site.

The “STACK” comprises
the database, server-side

framework, server, and
operating system (OS).

DST topics:
Backend services in multi-
cloud environments

DST 2018 7

Communications

Full stack developer

Figure source - https://medium.com/dev-
bits/why-full-stack-development-is-too-good-
for-you-in-2017-3fd6fe207b34

} ! : — .
Front-end Dev Back-end Dev ‘ Databases ‘ nnop- ‘ Mobile App Dev ‘
css Eython MySGE cl ;
ENEEE - @ s
o
s \twisew) (f Dango - 7 s\ 7 e N /{;;m\\
& EE & & & &=

DST topics:

with Front-end

TRENDS & KEY DESIGN
CONCEPTS

DST 2018 8

Rapid changes in application requirements
and technologies for distributed applications

On-premise servers = public clouds and on-premise
clouds

Static, small infrastructures - large-scale virtualized
dynamic infrastructures

Heavy monolithic services - microservices
Server - Serverless Architecture

Data - Data, Data and Data

DST 2018 9

Bl A not so complex distributed

application
| Laptop Technologies Distribution
k Web Browser Java EE Application 1 Java EE Application 2
J Q “/-. Client Client
Tier Machine
Internet Application Client Web Pages
' 7 l ' R JavaServer Faces
\ Pages
Server , Web
. i Tier
Shopping I/ o e
L Service N
Server B ‘ Enterprise Beans Enterprise Beans i
Business
Fi :
* ~ Uy h:'?plf;/?jfs:crgﬁus.com/fiIes/se
rverrack.jpg
Database Database v L .
(MySQL) Els Database *__!* ~amazon
Tler Server “¥ webservices"

Figure source: https://docs.oracle.com/javaee/7/tutorial/overview003.htm

DST 2018 10

I A complex, large-scale distributed
system

@_ﬁ Elcus *.;f:.:?;;
—
Persistent Store
\‘. I REmmm
e o |7 e e
Vi mo!\rn: | ‘ |
Enrolment Packets {48 $oDF 17 e L‘g&

('b e PR E TN
llllllll —

WA Yow o . W0
TOF | Fonn

9238 92389238 Pl

G

REJECTED

=%/

Multi-platform
Java client with
multi-vendor

device support

\ Biometric System)

Figure source: http://uidai.gov.in/fimages/AadhaarTechnologyArchitecture_March2014.pdf

DST 2018 11

mn What we have to do?

System/application business logic Development and operation tasks
= Data = Development
. Commur_ucatlon Deliver . Dep!oyment
= Processing = Testing
= Visualization _ = Monitoring
= Routing » Performance analysis
= Load balancing = Teamwork
= Monitoring & Logging
= Eftc.

selecting the right technologies as well as design
methodologies

DST 2018 12

mn Understand the requirements

= Data
= Structured, semi-structured or unstructured data?
= Do we need data being persistent for several years?
= |s accessed concurrently (from different applications)?
= Mostly read or write operations?
= Data intensive or computation intensive application

Lo Products Solutions Customers Services & Support ~ About Us Q GET STAR
HORTONWORKS'

OPEN SOURCE IS WINNING

TODAY'S DATA IN PETABYTES

1,013,541,363

Cost Savings Open Source in Fortune 500

o the Data Center o
80% 8BS, 97%

WE ENABLE ORGANIZATIONS TO MAXIMIZE THE POWER OF OPEN SOURCE TO DELIVER ON THE PROMISE OF BIG DATA.

LEARN MORE

This course is not about big data but distributed applications today have to
handle various types of data at rest and in motion!

DST 2018 13

mn Understand the requirements

= Physically distributed systems

= Different clients and back-ends

= On-premise enterprise or cloud systems?
= Complex business logics

= Complexity comes from the domain more than
from e.qg., the algorithms

Integration with existing systems

= E.g., need to interface with legacy systems or
other applications

= Scalability and performance limitation
= Etc.

DST 2018 14

I How do we build distributed

applications

= Using fundamental concepts and technologies
= Abstraction: make complicated things simple
= Layering, Orchestration, and Chorography: put things together
= Distribution: where and how to deploy

= Using best practice design and performance patterns
= Principles, e.g., Microservices Approach

Modeled around Culture of
business concepts automation

Highly Hlde mtemal
ohcervable Small autonomous Implementatlon
. . services details
Figure source:Sam Newman, Building

Microservices, 2015
lsolate Decentralize all
failure Deploy the Ihmgs
independently

DST 2018 15

mn Abstraction

Deal with technical complexity by hiding it behind clear
simple interfaces

APIls abstracting complex communications and
Interactions

Interfaces abstracting complex functions
Implementation

DST 2018 16

mn Layering

Deal with maintainabllity by logically structuring
applications into functionally cohesive blocks

Benefits of Layering
= You can understand a single
layer without knowing much
about other layers

= Layers can be substituted with
different implementations

» Minimized dependencies
between layers

= Layers can be reused

Downsides of Layering

» Layers don’t encapsulate all
things well: do not cope with
changes well.

= Extra layers can create
performance overhead

= Extra layers require
additional development
effort

DST 2018 17

ISl Examples: abstraction and layering
side-by-side

Relational Database

Figure source: http://docs.jboss.org/hibernate/orm/5.1/userguide/html_single/Hibernate_User_Guide.html

DST 2018 18

mn Partitioning functionality & data

= Why?
= Breakdown the complexity
= Easy to implement, replace, and compose

= Deal with performance, scalabllity, security,
etc.

= Support teams in DevOps
= Cope with technology changes

Enable abstraction and layering/orchestration, and
distribution

DST 2018 19

ISl Example of functional and data

partitioning

L
o
=

(&)
(T]_ Functional Partitioning of a Commerce System

order o
entry i billing i

arn
fulfil

der

Iment
L
o

FIGU

order

ent
[region)

billing
[region.
customer 0]

2 Data Partitioning of a Commerce System with Partitioning Keys

Customer
database
[region.
custamer 0]

[warehouse,

inventory

product [0]

order
fulfillment
[region,
warehouse|

Figures source: http://queue.acm.org/detail.cfm?id=1971597

DST 2018

20

shipping
[region,
warehouse]

mn Partitioning functionality: 3-
Layered Architecture

Presentation

Presentation
= |nteraction between user and software

Domain Logic (Business Logic)

= Logic that is the real point of the system

= Performs calculations based on input and stored data
= Validation of data, e.g., received from presentation

Data Source

= Communication with other systems, usually mainly
databases, but also messaging systems, transaction
managers, other applications, ...

Domain Logic

Data Source

DST 2018 21

mn Orchestration and Choreography

Energy Optimization]

Orchestration

Service
Sensor Data
[Analytics Emergency Service]
. fff =t Equipment
w b= ol ;‘ | Maintenance Service
5% INTERNETof
o /
T !_NGS@ o (Near Realtime]
= el > L Ana‘ly5|s
[Sensors } _______________ _[Broker }
— { Historical Data J
Choreography Archiving

DST 2018 29

mn Distribution: where to run the
layers?

Client machine

‘ User il'IlEI'[EICEj

User interface

User interface

User interface

More in lecture 4

Application

Application Application) .ﬁFuppIicatinn
Database Database Database
Server machine
(a) (b) (c)

User interface User interface
Application Application
Database
Database [Database ‘
(d) (e)

Figure source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DST 2018

23

n Distribution: OS, VM, Container, or
Function-as-a-Service?

Source: The XEN Hypervisor (http://www.xen.org/)

A A
ll.',f,’ ﬁ App B Docker

Domain 0 S Bins/Libs The Docker Engine container comprises just the
Guest . " . . application and its dependencies. It runs as an isolated
Domain Domain Docker Engine ppcatc - .
e G process in userspace on the host operating system,
uest / | Uest / sharing the kernel with other containers. Thus, it enjoys
the resource isolation and allocation benefits of VMs but
Server
is much more portable and efficient.

Xen
e

AWS Lambda

DST 2018 24

mn Distribution: edge systems, core
network backbone or data centers?

Use Case 3: Video Analytics

. . I Video Video : Video
Chinese police are using smart glasses to identify : : "
potent|al suspects R mgmt analytlcs storage
B [86
|
A ; MEC server ; CorelT
Ml LTE base station
——_
Bgggg EEEBEE
https://techcrunch.com/2018/02/08/chinese-
police-are-getting-smart-glasses/ Video streams Events, meta data and video clips
High bandwidth Low bandwidth

_ Figure 4: Example of video analytics
Figure source:

https://portal.etsi.org/portals/O/tbpages/mec/docs/mobile-edge_computing_-
_introductory_technical_white_paper_v1%2018-09-14.pdf

DST 2018 25

ﬂ Programming

Language Rank Types Spectrum Ranking

vew @ @ el
2 o D2 B
suwe @DY L
0 o D2 B
so @0W Bl
.. b >
oseesow @0 B8
s ® Be
e @ W [mL

0o

Source: https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages

DST 2018 26

What is the downside of functional
and data partitioning?

DST 2018 27

ARCHITECTURE STYLES AND
INTERACTION MODELS

DST 2018 28

mn Basic direct interaction
you ‘

Process boundary

Remoting Objects/Procedures/Services/Servers

Process boundary

= Using abstraction, we hide the complexity within these boxes

= But we need to integrate between two components, enabling them
communicate across process boundaries

= |n the same host, in the same application in different hosts, in
different applications

= How would they exchange data/commands? e.g., Synchronous
or asynchronous communication

= Complex in context of complex distributed systems
DST 2018 29

mn Basic interaction models

= Large number of communication protocols and
Interfaces

* [nteraction styles, protocols and interfaces

= REST, SOAP, RPC, Message Passing, Stream-
oriented Communication, Distributed Object models,
Component-based Models

= Your own protocols

= Other criteria
= Architectural constraints

= Scalability, performance, adaptability, monitoring,
logging, etc.

DST 2018 30

mn Component Based Systems

= Components:
= Reusable collections of objects
» C(Clearly defined interfaces
= Focus on reuse and integration

» Implementations: Enterprise Java Beans, OSGi,
System.ComponentModel in .NET

Contracts Bills
Client

- List<Contract> contracts

+ void addNewContract(Contract contract)
+ long calculateRevenue(Contract contract)

CustomerRelations

DST 2018 31

mn Service-Oriented Systems

= Service-oriented Computing:
= Applications are built by composing (sticking

together) services (lego principle)

= Services are supposed to be:
Standardized,
Replaceable,
Reusable/Composable,
Stateless

DST 2018 32

mn Components vs. Services

Components

= Tight coupling

= Client requires library

Client / Server
Extendable

Fast
Small to medium
granularity
= Buying components
and installing them on
your HW

Services

» Loose coupling
= Message exchanges
= Policy

= Peer-to-peer
= Composable

= Some overhead
= Medium to coarse
granularity
= Pay-per-use on-
demand services

mn REST

» REST: REpresentational State Transfer

* |s an architectural style! (not an implementation
or specification)

» See Richardson Maturity Model
(http://martinfowler.com/articles/richardsonMaturityM
odel.html)

= Can be implemented using standards (e.g., HTTP,
URI, JSON, XML)

= Architectural Constraints:

= Client-Server, Stateless, Cacheable, Layered
System, Uniform Interface

DST 2018 34

mn Example of REST Interactions

* |mportant concepts

= Resources

» |dentification of Resources

= Manipulation of resources through their representation

» Self-descriptive messages

* Hypermedia as the engine of application state (aka. HATEOAS)

Web GET (list/retrieve) Web Service
Service PUT (update/create)
Client

POST (create/update) EJR“: Resource,
URI,: Resource, J

DELETE (remove)

DST 2018 35

mn Recall: Remote Procedure Call
Systems

= Server provides procedures that clients can call

» Most RPC-style middleware follows a small set of architectural
principles

= Strongly tied to specific platforms
= Why is it relevant in complex distributed systems?

Client Host Server Host

Server

Client >

long recognizedRevenue(long contractNr, Date asOf)

long calculateRevenue(long contractNr)

ne diagramming & design] Cr@ately com

DST 2018 36

mn gRPC as state-of-the-art framework

http://www.grpc.io/
Works across languages and platforms

Automatically generate idiomatic client and server stubs for your service in a variety of languages and
platforms

Ruby Client

gRPC Server

READ MORE

C++ Service

o1
Rr’sl’lonse[s‘.l

Android-Java Client

Apache Thrift ™

The Apache Thrift software framework, for scalable cross-language services development, combines a
software stack with a code generation engine to build services that work efficiently and seamlessly
between Cs+, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, Download

OCaml and Delphi and other languages. Apache Thrift v0.10.0

What kind of benefits we get, compared with REST

Interactions and data exchange formats?
DST 2018 37

mn Server-sent Events and WebSocket

= Server-sent Events
= Remember polling results from servers?

= Server pushes data to clients through HTTP when
the clients connect to the server.

» WebSocket (https://tools.ietf.org/html/rfc6455)

* Remember socket?
= Two ways of communication through TCP

= Example, socket.io (more than just a typical
WebSocket)

For which use cases/scenarios we can use them?

DST 2018 38

mn WebHook

URL accepting HTTP POST

Ruby Python PHP Java MNode .MET

Set your secret key: remember to change this to your live secret k
See your keys here: https://dashboard.stripe.com/account ey
))

var stripe = require("stripe")("sk_test_BQokikJOvBiIZHlwgH4olfQ2"),;

n1s exampLe uses cXpress TO recelve WebDnooOKS

const app = require("express")();

HetTrileve The r

2 and LCN & L Content 1~

app. use[requ1re[”budy parser“j raw({type: ”rfr“}jj

app.post("/my/webhook/url", funct10n(request, response) {

Retrieve the request's body and parse it as JSON

var event_json = JSON. parse(request body) ;

Do something with event_json

response.send(2080) ;

1

Source: https://stripe.com/docs/webhooks

DST 2018 39

Il Message Passing/Message-
Oriented Communications

More in lecture 2 (fundamental) and lecture 5 (large-scale)

Send Message i
[Sender } J Recelve Message{ Receiver J
Receive Reply Send Reply

= Servers and clients communicate by exchanging messages

Stream-oriented communication
When delivery times matter!

client server
Streaming
data m3 | Lm2 | [Lmi | | m3 |< ““““ > m2 | Lm |
L‘ time$
When the
End-to-end delay transmission
of m2

DST 2018 40 completes

mn Complex interactions

= (One-to-many, Many-to-one, Many-to-One

» Message Passping Interface
» Public/Subscribe, Message-oriented Middleware
» Shared Repository
= \Websocket (also support broadcast)
= Application/Systems specific models

Client Client Client

Client

Repository ¢

Amazon S3
DST 2018

41

Producer

——————————

Consumer

Consumer

Consumer

mn Serverless

= Most of the time we need to build and setup
various services/server

= But with the cloud and PaaS providers - we do
not have to do this

= Serverless computing:
= Function as a service

= Examples

AWS Lambda

Google Cloud Function (beta - https://cloud.google.com/functions/)
IBM OpenWhisk

https://serverless.com/

DST 2018 42

mn Serverless

= Key principles
= Running code without your own
back-end server/application

AWS Account
server systems
i i i 3 "
= Tasks in your application: *))n)))))la =,
described as functions @ o

Amazon 53
g AWS Lambda . Role
L] 2 v
User — ‘/ 4

= With a lifecycle 2 g 4
75

1 R 4 p;
= Functions are uploaded to FaaS " g ffmw
and will be executed based on e e A
different triggers (e.g., direct call
Source: http://docs.aws.amazon.com/lambda/latest/dg/with-s3-
or events) examplehtm

= Event-driven triggers!
Check: https://martinfowler.com/articles/serverless.htmi

DST 2018 43

mn Example: chat

From Anton Chernysh, Source: https://medium.com/devoops-and-universe/serverless-
slack-bot-on-aws-vs-azure-getting-notified-instantly-ab0916393e1d

Phase 1 Phase 2
CloudWatch
da g
41 .
i} varm1
APl Gateway Lambda function -
. : L5, Bot event handler IJ\I\ u Alarm 2
_\ : 4 .
\ SNS topic Bl marmn

, \ ﬁ
| \‘ e ___________.___
I P —
S "{.

Slack channel LI.I CloudWarch alarm handler

@ 53 notifications handler

DST 2018 44

Bl Case study serverless Deloitte-
Amtrak

Source: https://www.slideshare.net/GaryArora/leapfrog-into-serverless-a-deloitteamtrak-case-study-serverless-conference-2017/

Be the first to clip this slide

Value Delivered

Developed and released in six months!

THE COST OF EVERYTHING

ISTOO0 DAMNHIGH

+ Processing source of truth & entry + Laid out the groundwork for
with a peak via JSON restful services decommissioning legacy
load of 2K transactions/minute : Future proof systems
reports and by &
dashboards supporting edge casesthatwere pperations: No servers to
previously missed maintain, load-balance, or scale

o 12022 P

489 views

Leapfrog into Serverless - a Deloitte-Amtrak
Case Study | Serverless Conference 2017

DST 2018 45

Depending on the requirements: we can build
everything or build few things and manage the
whole system or not.

- We need to carefully study and examine
suitable technologies/architectures for our
complex distributed applications

A big homework:
Microservices approach versus serverless approach

DST 2018 46

DATA MODELS

DST 2018 47

mn Data Storage Models

Relational Model
= Traditional SQL model

= Key-Value Model

» Datais stored as simple list of keys and values (hashtable
style)

= Column-oriented Model

= Data is stored in tables, but stored column-wise rather than
row-wise

= Document-oriented Model

= Datas stored in (schemaless) documents
= Graph-oriented Model

= Data is stored as an interconnected graph

DST 2018 48 NoSQL versus SQL

mn Relational Model

= Implemented as collection of two-dimensional tables
with rows and columns

= Powerful querying & strong consistency support

= Strict schema requirements

» E.g.. Oracle Database, MySQL Server, PostgreSQL

DB Browser for SQLite -

jects/teaching/dst/relati

ldatabase/dst.db

& New Database = Open Database

Database Structure | Browse Data | Edit Pragmas Execute SQL

Table: | [People 1= New Record
name cost org
Filter Filter Filter

1 DMl 30 DatabaseManagement

2 DMz 50 DatabaseManagement

3 DM3 30 DatabaseManagement

4 DM4 30 DatabaseManagement

5 DM5 10 DatabaseManagement

6 DM& 30 DatabaseManagement

7 | DM7 20 DatabaseManagement

8 BASL 40 BusinessApplicationsServices
a BAS2 30 BusinessApplicationsServices
10 BAS3 20 BusinessApplicationsServices
11 BAS4 30 BusinessApplicationsServices
12 BASS 40 BusinessApplicationsServices
13 PSM1 20 PlatformSupportMainframe

<) <) 1-130F113 |2 || Go to: 1

DST 2018

Delete Record

DB Schema

Name
v [Tables (3)
B ¥ [= Availability
=) name
| Q start
|= stop
2 timezone
v [=l People
=) name
[= cost
|2 org
v (= skill
2 name
=) skill
|= weight
Indices (0)
| Views (0)
L[Triggers (0)

SQL... | ... | DBSche...

49

Type

varchar(20)
smallint
smallint
smallint

wvarchar(20)
smallint
wvarchar(80)

wvarchar(20)
varchar(80)
smallint

B®

Schema

CREATE TABLE Availability (name varchar(20), start smallint, stop smallint,...
‘name’ varchar(20)
‘start’ smallint
‘stop’ smallint
‘timezone™ smallint
CREATE TABLE People (name varchar(20), cost smallint, org varchar(80))
‘name’ varchar(20)
“cost” smallint
‘org” varchar(80)
CREATE TABLE skill (name varchar(20), skill varchar(80), weight smallint)
‘name’ varchar(20)
“skill® varchar(g80)
‘weight” smallint

JTF-

mn Key-Value Model

= Basically an implementation of a map in a programming
language

= Values do not need to have the same structure (there is
no schema associated with values)

= Primary use case: caching
» Simple and very efficient, fast (e.g., in memory storage)
= Querying capabilities usually very limited
Oftentimes only “By Id” pattern
= E.Q.
= Memcached, Riak, Redis

DST 2018 50

mn Document-oriented Model

- G D=
A simple analogy @

\Collection /

= All values are schema-free and typically complex

= Simple, comparable to key-value

= Primary use cases: managing large amounts of unstructured
or semi-structured data

= Sharding and distributed storage is usually well-supported

= Schema-freeness means that querying is often difficult and/or
inefficient

= E.g.;, CouchDB, MongoDB

DST 2018 51

Collection: GPS55ensors

Documents Indexes

Documents

— Start new search— 2

All Documents

MongoDB with mLab.org

Tools

Delete all documents in collection

Nicenlaw o 1ot tahla fadit tahle T
Display mode: @ list @ table (edit table view

"DeviceID": "51C43906",

"latitude”: "10.730836",

"longitude”: "106.580345",

"speed”: "0",

"reliability”: "0",

"position": {
"latitude”: "10.7973",
"longitude”: "106.6452"

¥

DST 2018

Add document

mn Complex Relationships?

Entityl Entity2 Entity3

i O<

Entity4 EntityS

How do we represent such relationships with documents?

DST 2018 53

mn Column-oriented data model

Rows are allowed to have different columns

= Data Model

= Table consists of rows

= Row consists of a key and one or more columns

= Columns are grouped into column families

= A column family: a set of columns and their values

= Systems: Hbase, Hypertable, Cassandra

DST 2018 54

mn Examples: HBase

Row Key Time Stamp ColumnFamily ColumnFamily ColumnFamily {
contents anchor people e
"com.cnn.www" t9 ?gglilr:cnnsi.com = contents: {
t6: contents:html: "<html>..."
"Com.cnn.www" 8 anchor:mylook.ca =
TN t5: contents:html: "<html>..."
R “ comtentedim] = t3: contents:html: "<html>..."
"<html>..." }
“com.cnm www" 5 contents:himl = anchor: {
R t9: anchor:cnnsi.com = "CNN"
"com.cnn.www" 3 contents:himl = t8: anchor:my.look.ca = "CNN.com"
"<html>..." }
people: {}
}
"com.example.www": {
contents: {
t5: contents:html: "<html>..."
}
anchor: {}
Source: http://hbase.apache.org/book.html#datamodel people: {
t5: people:author: "John Doe"
}
}
}

DST 2018 55

mn Graph-oriented Model

= Data relationships as first-class citizens
» Data is stored as a network (graph)

* Primary use cases: whenever one is more interested Iin
the relations between data than the data itself (for
Instance, social media analysis)

= Highly connected and self-referential data is easier to map to a
graph database than to the relational model

= Relationship queries can be executed fast

= E.g.: NeodJ, Orient DB, ArangoDB

= Many of them are actually multi-model (combine graph,
document, key/value, etc., models)

DST 2018 56

mn Examples Wlh Neo4;
0 D

' g Yoo
E ~ q w » “’.
_— > ey e ;.' & o

£ | g
-] L
) (4 Lo | | = 4
. Z | | E
5 L@ |
. _ i . I R g
5 I) Mgy, g | 1, o
H \ _'lv T 1T T =R
8% ® i B X } 3 a
_ * \ & Y Cl |

9‘ " . &
g] | A7
- © o Lt — B .u: .q‘ r@-
EE i - 3 N 0 ¥ \
2 / | i \ s
:] BT [& {
y @
/

Source: Manfred Halper, Master thesis, TU Wien,
https://github.com/rdsea/bigdataincidentanalytics

DST 2018 57

mn Blockchain as a database

Making a hash of it

Meet BigchainDB.

The blockchain database.

Bigchain DB:

DST 2018

INPUT

;e o | Transaction 'lhnucﬂon

Any length of data

OUTPUT #A
#DFCD 24D9 AEFE 9389 "‘5“ "““°

Unique hash value

of fixed length MERKLE

TREE

Each transaction in the set that
makes up a block is fed through a
program that creates an encrypted
code known as the hash value.

Hash values are further combined in a
system known as a Merkle Tree.

The result of all this hashing goes

into the block’s header, along with a Block 11

hash of the previous block’s header

and a timestamp. Block 10

The header then becomes part of a g
cryptographic puzzle solved by manipulating a Block 08
number called the nonce.

Once a solution is found the new block is added to the blockchain.

Source:
https://www.economist.com/news/briefing/21677228-technology-
behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-
build-dependable

https://www.bigchaindb.com/

I Key issues: we need to use many
types of databases/data models

Example - Healthcare
= Personal or hospital context

= Very different types of data for healthcare
» Electronic Health Records (EHRS)

= Remote patient monitoring data (connected
care/telemedicine)

= Personal health-related activities data

= Combined with other types of data for
Insurance business models

DST 2018 59

mn Question for design thinking

If you have to build a system that includes many
Individuals connected through a SocialNetwork
for discussing products they sell and buy and
they have a lot of different products to sell

How would you select database technologies for
your implementation?

DST 2018 60

mn Accessing and Processing Data

= Component accesses data
= Get, store, and process

= Data is in relational model, documents,
graph, etc.

= Main problems

* Programming languages are different -
Mapping data into objects in programming
languages

= Distributed and scalable processing of data
(not in the focus of this lecture)

DST 2018 61

mn Data Access APl Approach

[REST API | RESTAPI Service AP [Tool-specificAPI
N— - N— - N— - N— -
Object-based Relational Document- Relational
storage Database based Database
959) leomsoy) (Dambase J |

= Data access APIs can be built based on well-defined
Interfaces

= Currently mostly based on REST

= Help to bring the data objects close to the programming
language objects

DST 2018 62

mn SQL-based API

= |everage SQL as the language for
accessing data

= Hide the underlying specific technologies

Ne;uouew o | [Karmasphere] [Hue] [Qubole] [Olhers...]

v v : v

Hive

JDBC 0DBC

Save Query Save View Format Query Show Options l CI_I ' l HWI ' [Thl’i ﬂ Ser'uer]

Table Details: ALData
Schema Details Preview Driver
SO cccx | wusee compiles, optimizes, executes
Lzl !) Metastore
tapoint_id

eeeeeeeee

Hadoop

TIMESTAMP = NULLABLE
\
FLOAT
Threshold FLOAT
isActive = BOOLEAN NULLABLE M
aster
mmmmmmm TIMESTAMP = NULLABLE
*

e [Joblracker] [Name Node DES

Source: Programming Hive, Edward Capriolo, Dean Wampler, and Jason
Rutherglen

DST 2018 63

S Object-Relational/Grid/Document
Data Mapping (ORM/OGM/ODM)

Conceptual mismatch, especially with
relational database

Programming Language Objects

Sample Class Diagram .
Native Database Structure
e . (e.g., relations)
name:String date:Date S
location:String : - number:String | c:i:i % Form1 EEE
sendOrder() confirm() TR
receiveOrder() close() : N 5 P p—
55 Generaliza
o tion 2 2 2 Mango
| 1 3 P 3
SpecialOrder NormalOrder 2 5 4 |Hopfen
date:Date date:Date 2 4 5 |Kirsche
number:String number:String 3 1 *
confirm() confirm() 4 4
close() close() 4 B3
dispatch() dispatch() *_
feOEive() parent table {persons) relation table child table {fruits)
Which person loves which fruits 7

Sub class

DST 2018 64

mn What you want to avoid

Not just about security but tedious effort on coding

String query = "SELECT account balance FROM user data WHERE user name = "
+ request.getParameter("customerName");

try {
Statement statement = connection.createStatement(..);
ResultSet results = statement.executeQuery(query);

Source: https://www.owasp.org/index.php/SQL _Injection_Prevention _Cheat_Sheet

DST 2018 65

mn Solution (1)

Build an abstraction layer that represents the database In
the application

Two subproblems:
1. How do represent data in the application?

2. How to map between data storage and
application?

DST 2018 66

mn Solution (2)

= Technologies
= Java Persistence API
= Hibernate ORM (relational database)
* Hibernate OGM (NoSQL)
= Mongoose (for MongoDB)

= Methodology: design patterns
= http://martinfowler.com/eaaCatalog/index.html

DST 2018 67

= Se

Data-Related Architectural Patterns

e

= Mapping DB Data to Code

Code that wraps the actual communication between
business logics and data store

Required to fill* e.g., the domain model

= Goals

DST 2018

Access data using mechanisms that fit in with the
application development language

Separate data store access from domain logic and
place it in separate classes

68

http://martinfowler.com/eaaCatalog/index.html

mn Data Source Architectural Patterns

= Row Data Gateway

= Based on table structure. One instance per row returned by a query.

» Table Data Gateway

= Based on table structure. One instance per table.

= Active Record

= Wraps a database row, encapsulates database access code, and adds business
logic to that data.

= Data Mapper

» Handles loading and storing between database and Domain Model

DST 2018 69

BB Object-Relational Structural

Patterns

Employee Skill
Association Table Mapping
«tables «tables «tables
Employees skill-employees Skills
: employeeld :
d skillld d
Source: http://martinfowler.com/eaaCatalog/associationTableMapping.html
wtables
Player Footballers
name name
- lub
Class Table Inheritance fr\ —
|‘ wtablas
Footballer Cricketer Cricketers
club battingAverage
name
/_‘i‘_\‘ battingAverage
Source: http://martinfowler.com/eaaCatalog/classTablelnheritance.htmi
Eﬂ'ﬂ'ler “tahle“
bowlingAverage Bowlers

Solutions/Strategies:

http://www.javaworld.com/article/2077819/java-se/understanding-jpa-part-2-

relationships-the-jpa-way.html
DST 2018 70

name
battingAverage
bowlingAverage

http://docs.oracle.com/javaee/6/tutorial/doc/bnbqn.html#bnbqr

ISl Object-Relational Behavioral
Patterns: Lazy Loading

a customer the database

Do the loading as latest as possible
get orders

load orders

I I

I I

> |
'%‘ I
[orders not loaded] |
EE— |

I

|

Source: https://martinfowler.com/eaaCatalog/lazylLoad.html

S—

return orders

DST 2018 71

mn Lazy Loading

= For loading an object from a database it's
handy to also load the objects that are related
to it
= Developer does not have to explicitly load all objects
= Problem

= Loading one object can have the effect of loading a
huge number of related objects

= Lazy loading interrupts loading process and
loads data transparently when needed

DST 2018 79

BBl Lazy Loading Implementation
Patterns
= Lazy Initialization
= Every access to the field checks first to see if it's null

= Value Holder

= |azy-loaded objects are wrapped by a specific value
holder object

= Virtual Proxy

= An object that looks like the real value, but which
loads the data only when requested

= Ghost

» Real object, but in partial state
* Remaining data loaded on first access

DST 2018 73

mn Lazy Loading Example - Hibernate

@Entity

public class Product ({
@OneToMany (mappedBy="product"™, fetch = FetchType.LAZY)
//or FetchType.EAGER for edger loading
public Set<Contract> getContracts() {

How can we achieve the implementation? using proxy
technique (Lesson 3)

DST 2018 74

OPTIMIZING INTERACTIONS

DST 2018 75

mn Interactions?

- s
-, ~

Dependencies)
.) (.
[Client J 1 Service Service
(O—_Object
Object] J Remote Obiect
J L Object J

Object

Service

,=/;/

Application] f Remote
L Function

]

?

@)
8.
D
@)
—

~~~~~
——————————————————————————————————

DST 2018 76

[ LY S S —————



mn Optimizing Interactions

* [nteractions between software components and
within them

= Scale In: increasing server capability
= |oad balancer
= Scale out

= Asynchronous communication
= More In lectures 4&5

= Data sharding
= Connection Pools
= Efc.

DST 2018 77



(e.g database as a service API)

More in Lecture 4

d 2 |Scaie out by a factorof LUUUX—rr,0UUU

e

Figure source: http://queue.acm.org/detail.cfm?id=2560948

DST 2018 78



TU .
Load balancing

Figure source: http://queue.acm.org/detail.cfm?id=1971597
DST 2018 79



Need also
Routing, Metadata
Service, etc.

Shard A Shard B Shard C  Shard D

Soure: https://docs.mongodb.org/manual/core/sharding-introduction/

DST 2018 80



[ Client

100000 requests/s | service

]
)

Prevent too many accesses?

1 ( API Management ] i
) L Service J 1

REST FRAMEWORK '

sl FPEAMEW

'DEFAULT THROTTLE CLASSES':

[ Client Service ]

st framewocrk.throttling.BAnonRateThrottle”

Code: http://www.django-rest- 'rest framework.throttling.UserRateThrottle”
framework.org/api-
guide/throttling/#how-throttling-is-
determined

'DEFAULT THEOTTLE EBATES':
'anon': '100/day’

'user': '1000/day’

DST 2018



mn Other patterns

= See the supplement slides
*» Understanding how to use communications to
Implement certain patterns
= Polling
= Fire and forget
= Callback

DST 2018 82



mn Summary

Understand the size and complexity of your distributed
applications/systems

Pickup the right approach based on requirements and
best practices

Architecture, interaction, and data models are strongly
Inter-dependent

There are a lot of useful design patterns

Distribution design and deployment technigues are
crucial - cloud models

Embrace diversity: Not just distributed applications with
relational database!

DST 2018 83



mn Other references

Sam Newman, Building Microservices, 2015
http://de.slideshare.net/spnewman/principles-of-microservices-ndc-2014

Markus Voélter, Michael Kirchner, Uwe Zdun: Remoting Patterns — Foundation of Enterprise, Internet and
Realtime Distributed Object Middleware, Wiley Series in Software Design Patterns, 2004

Thomas Erl: Service-Oriented Architecture — Concepts, Technology and Design, Prentice Hall, 2005
Roy Fielding’s PhD thesis on REST:

Roy Fielding’s blog entry on REST requirements: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven

Martin Fowler’s blog entry on RMM:
Martin Fowler: Patterns of Enterprise Application Architecture

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: a distributed storage system for structured data.
In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation - Volume 7
(OSDI '06), Vol. 7. USENIX Association, Berkeley, CA, USA, 15-15

Eric Redmond, Jim R. Wilson: Seven Databases in Seven Weeks — A Guide to Modern Databases and the
NoSQL Movement

Polyglott persistence:

CAP: http://lwww.julianbrowne.com/article/viewer/brewers-cap-theorem
Eventual consistency: http://queue.acm.org/detail.cfm?id=1466448
https://hackernoon.com/blockchains-versus-traditional-databases-c1a728159f79

https://www.coindesk.com/information/what-is-the-difference-blockchain-and-database/

bST E%QLSE'!/WWW.oraCIe.com/cloud/blockchagﬂndex.html#compare


http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/bliki/PolyglotPersistence.html

Tul 1
Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien
hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong

DST 2018 85



