
Messaging: Basic Exchange, Processing

and Transformation Models and Tools

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong

Twitter: @linhsolar

DST Summer 2018, Lecture 2

DST 2018 1

Outline

 Overview of streaming message-oriented data

programming

 Communication - Message-Oriented Middleware

 Java Messaging Service (JMS), Advanced Message

Queuing Protocol (AMQP), Message Queuing

Telemetry Transport (MQTT)

 Integration - Enterprise Integration patterns

 Message routing patterns

 Message transformation patterns

 Processing - streaming data processing with

Complex Event Processing

DST 2018 2

Topic complexity

DST 2018 3

Getting started with each topic of “complex *” in 10 minutes.

Thousand of pages of documents, APIs, tutorials and code

Further advanced topics will be covered in Lecture 5

Why messaging is so important for

DST?

DST 2018 4

STREAMING MESSAGE-

ORIENTED PROGRAMMING

Overview

DST 2018 5

Data stream programming

DST 2018 6

 Examples of data streams

 Continuous media (e.g., video for video analytics)

 Discrete media (e.g., stock market events, twitter

events, system monitoring events, notifications)

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can

be data described by a primitive data type or by a

complex data type, a serializable object, etc.

Streaming data: produced by (near)realtime data

sources as well as (big) static data sources

Some key issues

DST 2018 7

 Communication

 Many techniques are needed: sending/receiving, routing, storage, etc.

 Data processing

 Within the brokering infrastructures and platforms

 Within the producer and the consumer

 Interoperability issues: message format, etc.

 Performance issues: rates/throughput, intervals, delay/latency,

processing time etc.

Arrival orders

Data producer

Streaming

data

Data consumer

End-to-end delay

Message

brokering

Infrastructures &

platforms
msg3 msg2 msg1 msg3 msg1 msg2

Message-oriented Middleware

(MOM)

DST 2018 8

 Discrete media data units

 Data units are structured messages (maybe ordered by

timestamps)

 Well-supported in large-scale systems for

 Persistent but asynchronous messages

 Scalable message handling

 Message communication and transformation

 publish/subscribe, routing, extraction, enrichment

 Several implementations

Apache Qpid™
Amazon SQS

JMS

Apache Kafka

Message-oriented Persistent

Communication

DST 2018 9

Exchange models

Operations

PUT/SEND/PUBLISH

GET/RECEIVE

POLL/SUBSCRIBE

NOTIFY/SEND

Fig source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and

Paradigms, 2nd Edition, 2007, Prentice-Hall

The receiver pulls the

data from the broker or

the broker pushes the

data to the receiver?

Broker

MOM – some message processing

operations

DST 2018 10

m2
IF…

m1m3

m1

m2m3

Publish/subscribe/notify; send/forward; routing operations within a broker

queue

queuesrouter/exchange

Message processing within data

consumer

DST 2018 11

Incoming streams

Streaming

data type m

Output complex messages

m3 m2 m1

… … …

s3 s2 s1

m1

…

s1

m2

…

s2

m3

…

s3
Streaming

data type s

Complex/multiple streams

data processing

Application-specific data processing

Streaming data processing with a

network of data processing

elements

DST 2018 12

… … …

Streaming

data

processing

… … …

… … …

… … …

… … …

Streaming

data

processing

Streaming

data

processing

Message handling for service

integration

 Messages handling concepts and patterns have

been around for many years

 Cross services/organizations integration

 Enterprise integration pattern is well studied but

mostly focused on business messages

 http://www.enterpriseintegrationpatterns.com/

 Today distributed applications

 not just enterprise integration patterns

 also various types of measurements and log

information integration

DST 2018 13

http://www.enterpriseintegrationpatterns.com/

Filter, exchange, etc.

DST 2018 14

We need several features implemented by MOM,

consumers, or external systems

Client Clientm1m2m3

Queue/Topic

m4

Exchange,

Router, Filter,

Aggregator, etc.

http://www.eaipatterns.com/

Syntax and semantic problems

DST 2018 15

Secretary

of the state
PresidentKafka

Source: http://www.smart-

words.org/humor-

jokes/language-humor/who-

is-hu-china.html

The same

communication

protocol does not

mean that both

sides understand

the message well!

Message serialization and

deserialization

 Remember that the sender and the receiver are diverse

 In many cases, they are not in the same organization

 You need to guarantee the message syntax and

semantics

 Solutions

 Agreed in advance  in the implementation or with a

standard

 Know and use tools to deal with syntax differences

 But semantics are domain/application-specific

DST 2018 16

Arvo

DST 2018 17

 https://avro.apache.org/

 Support message

description

 Serialize and

deserialize libraries

 Work with different

languages
Python Java

Sender

Kafka

Sender

Syntax specification

Why is it important?

Some other techniques

 Protobuf
 From Google, used by default in gRPC (gRPC.io)

 https://github.com/google/protobuf

 Language-neutral, platform-neutral mechanism for
serializing/deserializing structured data

 Thrift
 https://thrift.apache.org

 RPC style

 Support also serializing and deserializing data)

 Support cross-language services development
 Specify services interfaces

 Data exchange

 Code generation

 Flatbuffers
 https://github.com/google/flatbuffers

DST 2018 18

https://github.com/google/protobuf
https://thrift.apache.org/

JAVA MESSAGING SERVICE

Communication

DST 2018 19

General concepts

DST 2018 20

 Standard APIs for Java platform

Client 1
msg1msg3

Client 2

Destination

Messaging System Provider

(Message

Producer)

(Message

Consumer)

msg2

Message Structure

DST 2018 21

 Types of messages (or what is a message for?)

 Application-specific semantics

 E.g., notify an event, send a document, or ask for

the execution of a command

Header Properties Body (payload)

 Header: pre-defined system information (e.g., storage,

routing and identification operations)

 Properties: application

defined properties

 Body: application-defined

 Java primitive types, Map (a set of tuples), Text, Serializable

Object

Delivery Patterns

DST 2018 22

Point-to-point

Publish/Subscription (Pub/Sub)

Fig source: http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts002.htm

Fig source: http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts002.htm

Request-reply versus Request-only

messages

 Request only

 A sender does not expect a reply for a given request

 Request-reply

 A sender expects, e.g., a system ack or an application-specific

reply

 Some design principles

 Need to uniquely identify a request message?

 Use a unique identifier

 Need a reply message from a request message

 Where is the return address?

 Correlation between the request and reply messages (using unique

id), e.g., MessageType=REQUEST|REPLY & MessageID = ID

DST 2018 23

JMS programming versus

administrative activities

DST 2018 24

Best as

Administered objects

Best as administered

objects

Best with

programming

activities

Fig source: http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts003.htm

Simple example from the Java

tutorial

DST 2018 25

@Resource(lookup = "java:comp/DefaultJMSConnectionFactory")

private static ConnectionFactory connectionFactory;

@Resource(lookup = "jms/Queue")

private static Queue dest;

….

try (JMSContext context = connectionFactory.createContext();) {

int count = 0;

for (int i = 0; i < NUM_MSGS; i++) {

message = "This is message " + (i + 1) + " from producer";

TextMessage msg = context.createTextMessage();

msg.setText(message);

msg.setIntProperty("ID",count);

if (((i+1) %2)==0) {

msg.setStringProperty("msgType","EVEN");

} else msg.setStringProperty("msgType","ODD");

context.createProducer()

.setDeliveryMode(DeliveryMode.NON_PERSISTENT)

.send(dest, msg);

count += 1;

}

System.out.println("Messages sent: " + count);

Some other JMS API features

 Control message acknowledgement

 By JMS provider or by the client

 Message parameters

 Persistent, priority, delay, and expiration

 Programming temporal destinations

 Nondurable versus durable subscription for

subscribers

 Asynchronous sending

DST 2018 26

Generic question: how does the broker manage durable subscription?

Example of temporary queues for

performance improvement

DST 2018 27

Use cases and Figs source: http://www.onjava.com/2007/04/10/designing-messaging-applications-with-temporary-queues.html

Common static queues for multiple clients Separate static queues for multiple

clients

Temporary queues

Outside the java world?

DST 2018 28

Source: http://docs.spring.io/spring-python/1.2.x/sphinx/html/jms.html

Recall

DST 2018 29

Figure source: http://queue.acm.org/detail.cfm?id=1971597

Would you use a

JMS topic or

queue?

ADVANCED MESSAGE

QUEUING PROTOCOL

Communication

DST 2018 30

Overview

DST 2018 31

 MOM, but not language- or platform- specific

 For Java, C#, Python, ….

 Solving message interoperability in heterogeneous

environments of MOMs

 Binary wire-level protocol for message

exchange, rather than APIs

 It does not include broker behaviors/capabilities but

they were in the standard before version 1.0

 http://www.amqp.org
Apache Qpid™

Core concepts –

Message/Transport

DST 2018 32

 Message representation

 Defined based on type

systems for interoperability

 Transport

 A network of nodes

connected via links

 Node: message storage,

delivery, relay, etc.

 Container: includes nodes

Figs source: http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

Core concept -- Transport

DST 2018 33

Figs source: http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

Connection

Session

Session and Connection endpoints

Links

Example

DST 2018 34

cloudamqp.com

Test sender

 Get a free instance of RabbitMQ from cloudamqp.com

 Get code from: https://github.com/cloudamqp/java-amqp-example

 First run the test sender, then run the receiver

Test receiver

channel.queueDeclare(QUEUE_NAME, false, false, false, null);

for (int i=0; i<100; i++) {

String message = "Hello distributed systems guys: "+i;

channel.basicPublish("", QUEUE_NAME, null, message.getBytes());

System.out.println(" [x] Sent '" + message + "'");

new Thread().sleep(5000);

}

while (true) {

QueueingConsumer.Delivery delivery = consumer.nextDelivery();

String message = new String(delivery.getBody());

System.out.println(" [x] Received '" + message + "'");

}

Note: i modified the code a bit

https://github.com/cloudamqp/java-amqp-example

DST 2018 35

Real code versus simulation

http://tryrabbitmq.com/

Performance

 “RabbitMQ Hits One Million Messages Per

Second on Google Compute Engine”

 https://blog.pivotal.io/pivotal/products/rabbitmq-hits-

one-million-messages-per-second-on-google-

compute-engine

 https://cloudplatform.googleblog.com/2014/06/rabbit

mq-on-google-compute-engine.html

 Using 32 nodes

 RabbitMQ is widely used in big industries!

DST 2018 36

https://blog.pivotal.io/pivotal/products/rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine

MESSAGE QUEUING

TELEMETRY TRANSPORT

(MQTT)

http://mqtt.org

DST 2018 37

MQTT Overview

 OASIS Standard

 ISO/IEC 20922:2016 (Message Queuing
Telemetry Transport (MQTT) v3.1.1)

 M2M Connectivity Protocol atop TCP/IP

 MQTT brokers enable publish/subscribe
messaging systems

 Publisher can publish a messge within a topic that
can be subscribed by many Subscribers

 Simple protocols

 Suitable for constrained devices.

DST 2018 38

Protocol Features

 Lightweight protocol
 Small message size

 QoS
 At most once, at least once and exactly once

 Few commands/interactions: CONNECT, PUBLISH,
SUBSCRIBE, UNSUBRIBE, DISCONNECT
 Easy to implement

 Small foot-print libary

 Low bandwidth, high latency, data limits, and fragile
connections

 Suitable for IoT (constrained devices/networks)

DST 2018 39

How QoS would impact the design of the subscriber?

Model and Implementation

DST 2018 40

 Different programming languages for OS/devices

 Including Anrduino, Nanode

 Mosquitto (http://projects.eclipse.org/projects/technology.mosquitto)

 Paho: http://www.eclipse.org/paho/

 RabbitMQ

 Apache ActiveMQ

 Cloud providers:

 http://cloudmqtt.com (get a free account to learn MQTT)

Publisher
Broker

Server
Subcriber

http://projects.eclipse.org/projects/technology.mosquitto

MESSAGE ROUTING

PATTERNS

Integration

DST 2018 41

Integration Issues

DST 2018 42

 We need several features implemented by

MOM, consumer, or external systems

Client Clientm1m2m3

Queue/Topic

m4

Exchange, Router,

Filter, Aggregator, etc.

http://www.eaipatterns.com/

Example of supporting technology

DST 2018 43

Best practices for solving common

problems: Integration Patterns

Also check: http://projects.spring.io/spring-integration/

Content-Based Message Routing:

Camel/EIP

DST 2018 44
SS 2012

Source: https://camel.apache.org/content-based-router.html

Source: https://camel.apache.org/dynamic-router.html

Content-Based Router:

can be used to decide

the right destination

queue for a given

message based on the

message content

Dynamic Router: can

self-configure based on

processing messages

Content-Based Message Routing:

AMQP

DST 2018 45

Figs source: https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guid

e/chap-Messaging_User_Guide-Exchanges.html

Note: defined in AMQP 0-10

But not in AMQP 1.0

DST 2018 46

Some code example with RabbitMQ

Message Filter/Selector

DST 2018 47
SS 2012

TextMessage msg = context.createTextMessage();

msg.setText(message);

msg.setIntProperty("ID",count);

if ((count % 2)==0) {

msg.setStringProperty("msgType",“EVEN");

}

else

msg.setStringProperty("msgType",“ODD");

JMSConsumer consumer = context.createConsumer(dest,"msgType

=‘EVEN’”);

JMS: selector based on message header and properties

CAMEL/EIP: Message Filter

https://camel.apache.org/message-filter.html

Message Selector or

Message Filter: filter

unneeded messages

TRANSFORMATION

PATTERNS AND TOOLS

Integration

DST 2018 48

Splitter and Aggregator

DST 2018 49
SS 2012

Splitter: decompose a

composite message into

different messages

Aggregator: gather all

correlated messages for

a specific purpose then

build a new composite

message

Questions: for which scenarios/use cases we can use the above-

mentioned patterns

https://camel.apache.org/splitter.html

https://camel.apache.org/aggregator2.html

How would you use splitter and

aggregator with a set of

microservices for a request

DST 2018 50

Request

Service 1

Service 2

Service n

?

Envelope Wrapper and Normalizer

DST 2018 51
SS 2012

Envelope wrapper: wrap a

message before sending it

into a messaging system and

unwrap it after the wrapped

message leaves the

messaging system

Normalizer: route all

messages of a given type

to a suitable Message

Translator which transforms

the message to the

common format.

https://camel.apache.org/normalizer.html

http://www.eaipatterns.com/EnvelopeWrapper.html

Content Enricher & Extracter

DST 2018 52
SS 2012

Content Enricher: obtain

required/missing data then

enrich the message with the

newly obtained data

Content Filter: remove

unimportant data items from a

message or extract only

needed information.

https://camel.apache.org/content-filter.html

https://camel.apache.org/content-enricher.html

Question: is it possible to send the to-be-enriched message to an external

service to enrich it or to send the message to an external extraction service?

Logstash

DST 2018 53

 Codecs: stream
filters within
inputs or outputs
that change data
representation

 E.g.: multilines
 a single event

53

Source: https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html

Plug-ins

DST 2018 5454

https://www.elastic.co/guide/en/logstash/current/working-with-plugins.html

Logstash Grok

Grok is for parsing unstructured log data

text patterns into something that matches your

logs.

Grok syntax: %{SYNTAX:SEMANTIC}

Regular and custom patterns

A lot of exiting patterns:

https://github.com/logstash-plugins/logstash-patterns-

core/tree/master/patterns

Debug Tools: http://grokdebug.herokuapp.com/

DST 2018 5555

https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns

Example with NETACT Log

DST 2018 5656

29869;10/01/2017 00:57:56;;Major;PLMN-PLMN/BSC-401441/BCF-137/BTS-

403;XYZ01N;ABC08;DEF081;BTS OPERATION DEGRADED;00 00 00 83 11

11;Processing

Simple Grok

Apache Nifi

DST 2018 57

 From NSA

 http://nifi.apache.org/

 Main concepts:

 Processor: components to handle data, such as

download, store, transform, etc.

 FlowFile: describes how different components are

composed to create pipelines for data ingestion

 Provenance (for data governance): see all usage

records in detail

57

Apache Nifi

DST 2018 5858

https://nifi.apache.org/docs.html

Example

DST 2018 59

COMPLEX EVENT

PROCESSING

Processing

DST 2018 60

Dataflow programming and

streaming processing

 Data exchange between tasks

 Links in task graphs reflect data flows

 Streaming processing

 Centralized or distributed (in terms of computing

resources)

 Various applications

 CEP is just one type of applications of streaming

processing

 Note: we will go further some advanced

streaming processing in Lecture 5

DST 2018 61

Centralized versus distributed

processing topology

DST 2018 62

Two views: streams of events or cloud of events

Centralized processing Distributed processing

Proces

sing

Usually only

queries/patterns are written
Code processing events and

topologies need to be

written

Event cloud

Event source

Proces

sing

Proce

ssing Proces

sing

node

node

node

node

node node

Goals of complex event processing

 Group and process events in a specific time

(time) and space (size) constraints

 Detect special situations

 Finding correlation among events

 Aggregation results

 Special case of streaming processing

DST 2018 63

TIBCO Systems

DST 2018 64

Source: http://www.tibco.com/blog/2015/10/05/how-to-extend-big-data-

architectures-with-rules-and-visualization/

WSO2 Carbon

CEP/Siddhi

Source:

https://docs.wso2.com/display/CEP420

DST 2018 65

Apache Flink

DST 2018 66

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/internals/components.html

Common concept in these systems

 The way to connect data streams and obtain events
 Focusing very much on connector concepts and well-defined

event structures (e.g., can be described in XML, JSON, POJO)

 Assume that existing systems push the data

 The way to specify “analytics”
 Statements and how they are glued together to process flows of

events

 High-level, easy to use

 The engine to process analytics requests
 Centralized in the view of the user  so the user does not have

to program complex distributed applications

 Underlying it might be complex (for scalability purposes)

 The way to push results to external components

DST 2018 6767

Basic concepts

DST 2018 68

m1m2m4 A stream of events

Arrival order

Window

If we

• specify a set of conditions for the window and events within the

window

then we can

• get a set of events filtered from the window that match these

conditions

Conditions: can be specified using an SQL-alike language or pre-

defined functions

Sliding/Tumble window size:

time or size of events

Event Representation, Streams and

Views

 Event sources: via MOM, files, different IO

adapters/connectors, etc.

 Event representation & views
 POJO (Plain Old Java Object), Map, Object-array, XML

 SQL-alike tables

 Event Stream

 Events ordered based on their arrival times

 Event Sink
 A component receiving events via its listener that declares

some statements on interesting events

DST 2018 69

Windows and Times

DST 2018 70

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/concepts/programming-model.html

Window size and slide

DST 2018 71

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/stream/operators/windows.html

Batch/Tumbling Windows

DST 2018 72

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/stream/operators/windows.html

Flink CEP Patterns

DST 2018 73
Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/cep.html

Flink CEP Patterns

DST 2018 74

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/cep.html

Example with Base Transceiver

Station

DST 2018 75

Data

station_id,datapoint_id,alarm_id,event_time,value,valueThreshold,

isActive,storedtime

1161115016,121,308,2017-02-18 18:28:05 UTC,240,240,false,

1161114050,143,312,2017-02-18 18:56:20 UTC,28.5,28,true,

1161115040,141,312,2017-02-18 18:22:03 UTC,56.5,56,true,

1161114008,121,308,2017-02-18 18:34:09 UTC,240,240,false,

1161115040,141,312,2017-02-18 18:20:49 UTC,56,56,false,

Simple example

DST 2018 76

AMQP Connector

Patterns

Output

Monitoring

DST 2018 77

Results

DST 2018 78

SQL-alike CEP

 We can register/view stream as a table (like

SQL)

 Then apply SQL-alike statements with windows

for detecting events and patterns

 Tools: Esper, WSO2, and certain streaming

databases

DST 2018 79

Example of WSO2 Siddhi

DST 2018 8080

Source: https://docs.wso2.com/display/CEP420/SiddhiQL+Guide+3.1

SQL-alike conditions

@Import('mobifonetrainingopensignal:1.0.0')

define stream inStream (meta_USERPHONE int, meta_TIME long, correlation_lat float,

correlation_lon float, GSM_BIT_ERROR_RATE float, GSM_SIGNAL_STRENGTH float,

LOC_ACCURACY float, LOC_SPEED float);

@Export('OutputSignal:1.0.0')

define stream OutputSignal (avgSignalStrength double, avgBitRateError double);

from inStream#window.lengthBatch(5)

select avg(GSM_SIGNAL_STRENGTH) as avgSignalStrength, avg(GSM_BIT_ERROR_RATE) as

avgBitRateError

insert into OutputSignal;

DST 2018 81

Put things together

DST 2018 82

A data pipeline of stream receivers  event processor  event publishers

82

Service

Example with WSO2 Carbon CEP

DST 2018 8383

Source Sink

Language + UI specifications

Can also execute the topology as Storm task (see Storm in the next lecture)

Get a high-level view

DST 2018 84

Check:

http://de.slideshare.net/alessandro_margara/processing-flows-of-information-debs-2011

BEYOND BASIC MESSAGE

PROCESSING

Partially covered in Lecture 5

DST 2018 85

Datalake with messaging

Figure source: Data Lake for Enterprises by Pankaj Misra; Tomcy John Published by

Packt Publishing, 2017

DST 2018 86

Cloud services and big data analytics

DST 2018 87

Data sources

(sensors, files, database,

queues, log services)

Messaging systems

(e.g., Kafka, AMQP,

MQTT)

Storage and Database

(S3, InfluxDB, HDFS, Cassandra,

MongoDB, Elastic Search etc.)
Batch data processing

systems

(e.g., Hadoop, Airflow, Spark)

Stream processing

systems

(e.g. Apex, Storm, Flink,

WSO2, Google Dataflow)

Elastic Cloud Infrastructures

(VMs, dockers, OpenStack elastic resource management tools, storage)

Warehouse

Analytics

Operation/Management/

Business Services

Data Processing Framework

 Batch processing

 Mapreduce/Hadoop

 Scientific workflows

 (Near) realtime streaming processing

 Flink, Apex, Kafka SQL, Storm

 Hybrid data processing

 Summingbird, Apache Kylin

 Impala, Storm-YARN

 Apache Spark

DST 2018 88

Take a short read: http://www.infoq.com/articles/stream-processing-hadoop

Analytics (Application Level)

Conceptual View

DST 2018 89

Data Processing Frameworks

Streaming/Online

Data Processing

Batch Data

Processing

Hybrid Data

Processing

Static data(Near)

realtime data

Decision Data Analysis

Analytics,

Tools,

Processes &

Models

Recap

So how can you use messaging techniques for

complex distributed applications/systems?

 Reactive patterns

 Asynchronous communications

 Large-scale integration

 Big data

 ?

DST 2018 90

Further materials

 https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guide/sect-Messaging_User_Guide-

Introduction_to_RHM-The_AMQP_0_10_Model.html

 Java Message Service: http://www.oracle.com/technetwork/java/index-jsp-142945.html

 Java Message Service specification, version 2.0, available from:

http://jcp.org/en/jsr/detail?id=343

 http://kafka.apache.org

 https://camel.apache.org/enterprise-integration-patterns.html

 http://www.eaipatterns.com

 http://docs.oracle.com/javaee/7/tutorial/doc/home.htm

 http://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/index.html

 http://www.espertech.com/esper/documentation.php

 Miyuru Dayarathna and Toyotaro Suzumura. 2013. A performance analysis of system s, s4, and

esper via two level benchmarking. In Proceedings of the 10th international conference on

Quantitative Evaluation of Systems (QEST'13), Kaustubh Joshi, Markus Siegle, Mariëlle

Stoelinga, and Pedro R. D'Argenio (Eds.). Springer-Verlag, Berlin, Heidelberg, 225-240.

DOI=10.1007/978-3-642-40196-1_19 http://dx.doi.org/10.1007/978-3-642-40196-1_19

 https://code.facebook.com/posts/872547912839369/improving-facebook-s-performance-on-

android-with-flatbuffers/

DST 2018 91

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guide/sect-Messaging_User_Guide-Introduction_to_RHM-The_AMQP_0_10_Model.html
https://camel.apache.org/enterprise-integration-patterns.html
https://camel.apache.org/enterprise-integration-patterns.html
http://www.eaipatterns.com/
http://docs.oracle.com/javaee/7/tutorial/doc/home.htm
http://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/index.html

92

Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at

http://www.infosys.tuwien.ac.at/staff/truong

DST 2018

