mu DST Summer 2018, Lecture 2

Messaging: Basic Exchange, Processing
and Transformation Models and Tools

Hong-Linh Truong
Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong
Twitter: @linhsolar

DST 2018 1

mn Outline

= Overview of streaming message-oriented data
programming
= Communication - Message-Oriented Middleware

= Java Messaging Service (JMS), Advanced Message
Queuing Protocol (AMQP), Message Queuing
Telemetry Transport (MQTT)

* Integration - Enterprise Integration patterns
= Message routing patterns
. Message transformation patterns

* Processing - streaming data processing with
Complex Event Processing

DST 2018 2

mn Topic complexity

Thousand of pages of documents, APIs, tutorials and code

Getting started with each topic of “complex *” in 10 minutes.

What You Know vs How much you know about it

What You
Know

Undergrad

Everything / Master's

-
Ph.D.

/ Copy! You overshol it!

Nothing

1 A How much you
o} e s know abou){ it

ORGSO 02008

WWW.PRDCOMICS. CON

Further advanced topics will be covered in Lecture 5

DST 2018 3

DST 2018

Why messaging is so important for
DST?

Overview

STREAMING MESSAGE-
ORIENTED PROGRAMMING

DST 2018 3)

mn Data stream programming

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can
be data described by a primitive data type or by a
complex data type, a serializable object, etc.

Streaming data: produced by (near)realtime data
sources as well as (big) static data sources

Examples of data streams
= Continuous media (e.g., video for video analytics)

= Discrete media (e.g., stock market events, twitter
events, system monitoring events, notifications)

DST 2018 6

mn Some key Issues

Data producer Data consumer

Message

Streamlng brokering

Infrastructures &

data msg3 msg2 msgl -7==-=- Platforms~ > msg3 <----> msg2 msg1
A A

»

‘ >
L. H End-to-end delay Arrival orders
= Communication

= Many techniques are needed: sending/receiving, routing, storage, etc.

= Data processing
= Within the brokering infrastructures and platforms
= Within the producer and the consumer
= |nteroperability issues: message format, etc.

= Performance issues: rates/throughput, intervals, delay/latency,
processing time etc.

DST 2018 7

Message-oriented Middleware

(MOM)

Discrete media data units
= Data units are structured messages (maybe ordered by

timestamps)

Well-supported in large-scale systems for
= Persistent but asynchronous messages
= Scalable message handling
Message communication and transformation

» publish/subscribe, routing, extraction, enrichment
Several implementations

Amazon SQS

JMS

DST 2018

Apache Qpid™

Apache Kafka

BRa00It

I Message-oriented Persistent

Communication
Exchange models
Sender Sender Sender Sender
running running passive passive

¢ ¢
P ES Sl H '''''' H ----- -B\ PUT/SEND/PUBLISH
‘. = Broker — - =

S < _¢ ______ ¢‘ _______ GET/RECEIVE
_______ , ommmmny POLL/SUBSCRIBE
NOTIFY/SEND

Receiver Receiver Receiver Receiver
running passive running passive The receiver pU”S the
data from the broker or
(a) (b) () (d)
the broker pushes the
Fig source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and .
Paradigms, 2nd Edition, 2007, Prentice-Hall data to the receiver?

DST 2018 o)

I MOM - some message processing
operations

Publish/subscribe/notify; send/forward; routing operations within a broker l

router/exchange queues

queue

m2

m3 | m2 m1l

DST 2018 10

IS Message processing within data

Complex/multiple streams
data processing

consumer
: Application-specific data processing :
. |
Incoming streams Output complex messages |
I |
Streaming : :
data type m|_M3 I m2 | mi :
I m3 m2 ml I
|
. l
| |
Streaming ' 5 52 o1 !
data type s s3 I 32. st :
|
|
|
|
|
|
|
|

DST 2018 11

mn Streaming data processing with a
network of data processing

elements
1
Strzztn;lng
.. I processmg

Streaming
data
’ processing

Streamlng
data
processmg

DST 2018 12

IS Message handling for service
Integration

= Messages handling concepts and patterns have
been around for many years
= Cross services/organizations integration

* Enterprise integration pattern is well studied but
mostly focused on business messages

* Today distributed applications
* not just enterprise integration patterns

» also various types of measurements and log
Information integration

DST 2018 13

http://www.enterpriseintegrationpatterns.com/

mn Filter, exchange, etc.

m4
Client J---': ms || m2 | @ mi ,‘* Client

. Queuel/Topic .~

Exchange,
Router, Filter,
Aggregator, etc.

http://www.eaipatterns.com/

We need several features implemented by MOM,
consumers, or external systems

DST 2018 14

mn Syntax and semantic problems

Secretary
of the state

I Kafka President

\ 4

President: "Secretary! Nice to see you. What's happening?"”
Secretary: "Sir, | have the report here about the new leader of China."

President: "Great. Lay it on me."

SO urce: http ://WWW. sm art_ Secretary: "Hu' is the new leader of China.”

President: "That's what | want to know."

WO rdS . O rg/h u m O r- Secretary: "That's what I'm telling you."

President: "That's what I'm asking you. Who is the new leader of China?"

JOkES/Ianguage—humor/WhO_ Secretary: "Yes.”

President: "I mean the fellow's name."

IS'hU'ChIna_htmI Secretary: "Hu."

President: "The guy in China.”
Secretary: "Hu."

President: "The new leader of China."
Secretary: "Hu."

President: "The Chinaman!"
Secretary: "Hu is leading China."

DST 2018 15

IS Message serialization and
deserialization

= Remember that the sender and the receiver are diverse
* |[n many cases, they are not in the same organization

* You need to guarantee the message syntax and
semantics

= Solutions

= Agreed in advance - in the implementation or with a
standard

= Know and use tools to deal with syntax differences
= But semantics are domain/application-specific

DST 2018 16

mn Arvo

https //avro . apaC h e] O rg/ ?TE'ES‘:”CECU;C rdsea.training.kafka.storm",

Support message
description

e":"timeStamp", "type":"long"}
Serialize and

deserialize libraries \

"fie

[}

e":"stationNetworkID", "type":"string"},
e":"stationID", "type":"string"},
e":"sensorName", "type":"string"},
e":"metricName", "type":"string"},
e":"metricValue", "type":"int"},
e":"state", "type":"string"},

e e K e R M R K e B

O 33 3333

T T G T S S S R S)
oo m m =
3 3333333 .-.

M M @ M D D

—
\nﬂnnnnﬂ

Work with different ’ ~
Python —{ Kafka Java

languages Sander Sender

\ 4

Why is it important?

DST 2018 17

mn Some other techniques

= Protobuf
* From Google, used by default in gRPC (gRPC.io)

= Language-neutral, platform-neutral mechanism for
serlaI|Z|ng/deserlallzmg structured data

= Thrift
» RPC style
= Support also serializing and deserializing data)

= Support cross-language services development
= Specify services interfaces
= Data exchange
= Code generation

» Flatbuffers
= https://github.com/google/flatbuffers

DST 2018 18

https://github.com/google/protobuf
https://thrift.apache.org/

Communication

JAVA MESSAGING SERVICE

DST 2018 19

mn General concepts

» Standard APIs for Java platform

msg3 msg1l
[Client 1} ----- i--» msg2 @ F---- gemm e »[Client 2]
|
| Destination :
(Message : | (Message
Producer) | Messaging System Provider! Consumer)

DST 2018 20

mn Message Structure

= Header: pre-defined system information (e.g., storage,
routing and identification operations)

= Properties: application
defined properties Header
= Body: application-defined

= Java primitive types, Map (a set of tuples), Text, Serializable
Object

Properties] Body (payload)

= Types of messages (or what is a message for?)
= Application-specific semantics

= E.g., notify an event, send a document, or ask for
the execution of a command

DST 2018 21

mn Delivery Patterns

Point-to-point Msg Ms

I Gunaumes — Client 2

Cliant 1 — Sends
. _’E_-memeduas—

Fig source: http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts002.htm

Publish/Subscription (Pub/Sub)

Mzg Topic

- Subscribes —— Client 2
Delivers —»
Client1 — Publishes —» Msg
«— Subscribes ——{ o o

Delivers ——=

Fig source: http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts002.htm

DST 2018 29

Il Request-reply versus Request-only
messages

* Reqguest only
= A sender does not expect a reply for a given request
* Request-reply
= A sender expects, e.g., a system ack or an application-specific
reply
= Some design principles
= Need to uniquely identify a request message”?
- Use a unique identifier

= Need areply message from a request message

—> Where is the return address?

-> Correlation between the request and reply messages (using unique
id), e.g., MessageType=REQUEST|REPLY & MessagelD = ID

DST 2018 23

I IMS programming versus
administrative activities

Best as
Administered objects

d"!:‘p JNDI Namespace
) Connction e ¢
‘%ﬂHH“ Factory . kik

| | | Inject Resource

— W— - 4—| i
... 1 i emm_—T ~ ~ l " —— Legical Connection —»
Best with R G'T“ S~o g S
: JMSContext S
programming | ~ <.
activitie / ”"T:"“ R
/ l:raftas \
\
\ MPaﬁlsaga «— Creates + Session — Creates —» éﬂmgm \
\ ! /
\ Sends Creates Receives /
—-_——_ To l From _ . =

Destination N Msg Destination

Best as administered
objects

Fig source: http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts003.htm

DST 2018 24

B Simple example from the Java
tutorial

@Resource(lookup = "java:comp/DefaultJMSConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource(lookup ="jms/Queue")

private static Queue dest;

try (JMSContext context = connectionFactory.createContext();) {
int count = 0;
for (inti=0; i< NUM_MSGS; i++) {
message = "This is message " + (i + 1) + " from producer”;
TextMessage msg = context.createTextMessage();
msg.setText(message);
msg.setintProperty("ID",count);
if (((i+1) %2)==0) {
msg.setStringProperty("msgType","EVEN");
} else msg.setStringProperty("msgType","ODD");
context.createProducer()
.setDeliveryMode(DeliveryMode.NON_PERSISTENT)
.send(dest, msg);
count += 1,
}

System.out.printin("Messages sent: " + count);

DST 2018 25

mn Some other JMS API features

Control message acknowledgement
= By JMS provider or by the client

Message parameters
= Persistent, priority, delay, and expiration

Programming temporal destinations

Nondurable versus durable subscription for
subscribers

Asynchronous sending

Generic question: how does the broker manage durable subscription?

DST 2018 26

B Example of temporary queues for
performance improvement

Common static queues for multiple clients ~ Separate static queues for multiple

- clients
— [— @ N g
m:] Request Queue Server CLIENT _.'"E] _."

JZEE
Requests Message [MDB | Request Request Queue ok
m Selector m
CLIENT —
— Me>

Process Requests

' oh
Multiple Clients Responses \coPONse QUELE gonarate Responses CLIENT | t@] -—

Process Requests
Response Queue Generate Responses

Response

Message [EQ

Add Member / Respond to TCI!

Static Destination

Member Added

T d g | J2EE Server
Temporary qgqueues : (im0
g

Multiple Clients (’:TEE :«1 GI:r::r\:q:: :::‘::::m

Use cases and Figs source: http://www.onjava.com/2007/04/10/designing-messaging-applications-with-temporary-queues.html

DST 2018 27

mn Outside the java world?

Spring Python

(client)
------------------ "E;"""' Ir,‘""'_-_-“--------“---------““"
. . JMS Provider
e (server) T "
-------------------------------------- o
Java
(client)

Source: http://docs.spring.io/spring-python/1.2.x/sphinx/html/jms.html

DST 2018 28

requests distributed across the ldentical routers

Figure source
DST 2018

request
router

request
router

- ‘ g \
table

29

Would you use a
JMS topic or

. http://queue.acm.org/detail.cfm?id=1971597

Communication

ADVANCED MESSAGE
QUEUING PROTOCOL

DST 2018 30

mn Overview

= MOM, but not language- or platform- specific
* For Java, C#, Python,
= Solving message interoperability in heterogeneous
environments of MOMs
= Binary wire-level protocol for message
exchange, rather than APIs

* |t does not include broker behaviors/capabilities but
they were in the standard before version 1.0

= http://www.amqgp.org _
Apache Qpid ™

- StOrmmq WRabbit

DST 2018

B Core concepts -

Message/Transport

= Message representation
* Defined based on type e =
systems for interoperability | osemsae | T "Dl wea I
| | | Link (Src, Tgt) | | |
o *SI Tlt* """""""" ’
[] Transport Key: <MSG n> = old location of MSG_n
= A network of nodes
connected via links
| <<Container>> | 1..1 0..n | Node |
= Node: message storage, Cmmineria 1 e |
delivery, relay, etc. o T
| |
= Container: includes nodes :: :::
[[g — i pe—

Figs source: http://docs.oasis-open.org/amgp/core/v1.0/os/amgp-core-complete-v1.0-0s.pdf

DST 2018 32

mn Core concept -- Transport

Session and Connection endpoints

Session<------ + te--mm - >Session
(ICH=1, OCH=1) | | (ICH=1, OCH=1)
MY/ MY/

Session<--> Connection <--------- > Connection <-->Session
(ICH=2, OQCH=3) Y Y (ICH=3, 0OCH=2)
| |
Session<------ + t------ >Session
(ICH=3, OCH=2) (ICH=2, OCH=3)

Key: ICH -> Input Channel, OCH -»> Output Channel

Links

Client App Broker

s o—o-oo-o-oo - eso-o—-o-o-o- -
	#efsasaasaadssadssaanddsgdasag			
+---+ e e	+---+			
	C	Os==s=========m===mtomcsmmmsemm—cemm—e——c0	Q	
I N R I				
N	pEsEaaEEdEEss	aaandssidsagaaanag		
R Y-t | e +

A | |

Target | Source

Link

Figs source: http://docs.oasis-open.org/amgp/core/v1.0/os/amqp-core-complete-v1.0-0s.pdf

Connection
Client App Broker
e + e
| | #EsfdAaaaaasnisaiddaaanannig|
| +---+ | | +---+
| | C | | Connection | | © |
| +-t+-+ | | +-+-+
| | ittt f s e f s e L e o |
Fom - [==-nn-- + Fom - I +
| |
Consumer Queue
[Node) (Node)
Session
Client App Ercker
R + e
| | #esaaastddd i it ndnanaaaannnns|
| +---+ IR e | +---+
| | C | | Session | | @ |
| +---t R e I | +---t
| | #esaaastddd i it ndnanaaaannnns|
e + Foe e
DST 2018 33

mn Example

» Get a free instance of RabbitMQ from cloudamqgp.com
= Get code from:
= First run the test sender, then run the receiver

Test sender RaboIt V- > Test receiver

cloudamgp.com

channel.queueDeclare(QUEUE_NAME, false, false, false, null); while (true) {
for (int i=0; i<100; i++) { o . QueueingConsumer.Delivery delivery = consumer.nextDelivery();
String message = "Hello distributed systems guys: "+i; String message = new String(delivery.getBody());
System.out.printin(" [x] Sent "™ + message + ""); }

new Thread().sleep(5000);
}

Note: | modified the code a bit

DST 2018 34

https://github.com/cloudamqp/java-amqp-example

Real code versus simulation

RabbitMQ Simulator

Use the drawing area below to represent your messaging topology. Drag messaging elements from the toolbox on the left to the canvas. To connect nodes, hold the ALT key (or SHIFT
key) and drag from a source node to connect it to a destination node.

Advanced Mode

A
L changd Properties

=

queue Edit Exchange

L:' lectur
producer|

‘:i notification
cons’[lme TIOMzkx

notifigation fanout j

sim.gen-NTIOODczMI participant

tutor

Message Log

http://tryrabbitmg.com/

DST 2018 35

mn Performance

= “RabbitMQ Hits One Million Messages Per
Second on Google Compute Engine”

= https://cloudplatform.googleblog.com/2014/06/rabbit
mQ-on-google-compute-engine.html
= Using 32 nodes

= RabbitMQ is widely used in big industries!

DST 2018 36

https://blog.pivotal.io/pivotal/products/rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine

http://mqtt.org

MESSAGE QUEUING
TELEMETRY TRANSPORT
(MQTT)

DST 2018 37

mn MQTT Overview

= OASIS Standard

= |[SO/IEC 20922:2016 (Message Queuing
Telemetry Transport (MQTT) v3.1.1)

= M2M Connectivity Protocol atop TCP/IP

= MQTT brokers enable publish/subscribe
messaging systems

= Publisher can publish a messge within a topic that
can be subscribed by many Subscribers

= Simple protocols
= Suitable for constrained devices.

DST 2018 38

mn Protocol Features

= Lightweight protocol
= Small message size
= QoS
= At most once, at least once and exactly once

= Few commands/interactions: CONNECT, PUBLISH,
SUBSCRIBE, UNSUBRIBE, DISCONNECT

= Easy to implement

= Small foot-print libary

= Low bandwidth, high latency, data limits, and fragile
connections

= Suitable for IoT (constrained devices/networks)

How QoS would impact the design of the subscriber?

DST 2018 39

mn Model and Implementation

Publisher | Broker » Subcriber
Server

= Different programming languages for OS/devices
* Including Anrduino, Nanode
= Mosquitto (
= Paho: http://www.eclipse.org/paho/
= RabbitMQ
= Apache ActiveMQ
= Cloud providers:
= http://cloudmqgtt.com (get a free account to learn MQTT)

DST 2018 40

http://projects.eclipse.org/projects/technology.mosquitto

Integration

MESSAGE ROUTING
PATTERNS

DST 2018 41

mn Integration Issues
lCIient Jm4‘) Jlm2) (me) |} 9 - .[cnent]

Queue/Topic

E>\<change Router http://www.eaipatterns.com/

Filter, Aggregator, etc.

= We need several features implemented by
MOM, consumer, or external systems

DST 2018 A2

mn Example of supporting technology

c a m el Filter Processor Camel Processors
* Are use to wire
Integration Engine And Router p . Sngtg:mts together
outing
L * Transformation
Camel Endpoints 5 I'W:dlabor_'
Router Processor % é‘n‘:i'::p“"‘t‘
s e o * Validation
o . £
* Or Receive Messages ‘°/|o— 3 Im'(mg
from them o ogging
JMS HTTP Camel Components
Component Component

* Provide a uniform
Endpoint Interface

* Act as connectors
to all other systems

Best practices for solving common
problems: Integration Patterns

-

JMS Provider HTTP Client Local File
ActiveMQ | IBM | System
Tibco | Sonic ...

Also check: http://projects.spring.io/spring-integration/
DST 2018 43

IS Content-Based Message Routing:

Camel/EIP

Content-Based Router:
can be used to decide
the right destination
gueue for a given
message based on the
message content

Dynamic Router: can
self-configure based on
processing messages

DST 2018 A4

— Widrget
| Inventary
t% _" -
*—
Gadget
New Order e » |
Router O P P Inventory

Source: https://camel.apache.org/content-based-router.html

Oynamic Router Output Channel
—am— A
Message Router
Input Channel Cutput Channel
2, e — | e =
—_—
Cutput Channel

ﬁ — @D~ C

Dynamic%ule Baze :}_‘7

Contral Channel
Source: https://camel.apache.org/dynamic-router.htmi

Il Content-Based Message Routing:
AMOP

Producer

Producer: routing key =

Broker

Bindings:

Exchange:

Bindings: : L 4 .
binding key =

KEY

S m

iy

usa.weather

routing key

usa.news

europe.news | europe.weather

Broker

Note: defined in AMQP 0-10
But not in AMQP 1.0

Exchange:

Bindings: - . - v

bBinding key =

¥ =
. . . B
Figs source: https://access.redhat.com/site/documentation/en- her europe

US/Red_Hat_Enterprise_ MRG/1.1/html/Messaging_User_Guid
e/chap-Messaging_User_Guide-Exchanges.html

e © . o
Message Message Message

Some code example with RabbitMQ

DST 2018 46

mn Message Filter/Selector

JMS: selector based on message header and properties

TextMessage msg = context.createTextMessage();
msg.setText(message);
msg.setintProperty("ID",count);

if ((count % 2)==0) {

msg.setStringProperty("msgType",“EVEN");
Message Selector or - | " -
Message F|Iter flltel’ msg.setStringProperty("msgType",“ODD");
unneeded messages SMSConsumerconsumer =context createConsumer(dest msqType

CAMEL/EIP: Message Filter

W % e Y e T T

Widnet Gadget Widget Widget widget
Quote Quote Quote Message Qote Gllote

Filter

https://camel.apache.org/message-filter.html

DST 2018 A7

Integration

TRANSFORMATION
PATTERNS AND TOOLS

DST 2018 48

mn Splitter and Aggregator

Splitter: decompose a

composite message into t@ tm t[l]]]
different messages O

Mew Order Splitter Order Order Order

[tem 1 [tem 2 lterm 3

https://camel.apache.org/splitter.html

Aggregator: gather all t@ t@ t[l]]] _,_,E%
correlated messages for =

Inventory Inwentory Inwventory

a specific purpose then tem 1 fem2 ltem3 Agare gator Inventory

Order
build a new composite :
https:// . he.org/ tor2.html
— ps://lcamel.apache.org/aggregator2.htm

Questions: for which scenarios/use cases we can use the above-
mentioned patterns

DST 2018 49

Mﬂ How would you use splitter and

aggregator with a set of

microservices for a request

Request

DST 2018

?

Service 1

Service 2

50

Service n

mn Envelope Wrapper and Normalizer

Envelope wrapper: wrap a
message before sending it
into a messaging system and
unwrap it after the wrapped
message leaves the
messaging system

Normalizer: route all
messages of a given type
to a suitable Message
Translator which transforms
the message to the
common format.

DST 2018

Messaging System

Source Wirapper

(=] g

t@'

-0

Unwrapper

-8 %

Recipient

http://www.eaipatterns.com/EnvelopeWrapper.html

Mormalizer

Zadly]

% [

—

N

Different Message
Farmats Router

Bl

Translators

0%t

Cornmon Format

https://camel.apache.org/normalizer.ntml

51

mn Content Enricher & Extracter

Content Enricher: obtain
required/missing data then
enrich the message with the
newly obtained data

Content Filter: remove
unimportant data items from a
message or extract only
needed information.

Enricher

o g

Basic Message Enriched Message

3

Hesource

https://camel.apache.org/content-enricher.html
Content Filter

—]

Message Message

https://camel.apache.org/content-filter.ntml

Question: is it possible to send the to-be-enriched message to an external
service to enrich it or to send the message to an external extraction service?

DST 2018

52

mn Logstash

O Logstash Instance - C 0 d ec S S f[ream
filters within
e —1 Input .
plugin INpUts or outputs
S that change data
Data Source Data Destination representatlon

Filter

plugin = E.g.: multilines
—> a single event

Source: https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html

53 DST 2018 53

mn Plug-ins

beats Receives events from the Elastic Beats framework

cloudwatch Pulls events from the Amazon Web Services

CloudWatch API

couchdb_changes Streams events from CouchDB's _changes URI

drupal_dblog Retrieves watchdog log events from Drupal

installations with DBLog enabled

elasticsearch Reads query results from an Elasticsearch cluster

eventlog Pulls events from the Windows Event Log

exec Captures the output of a shell command as an
event

file Streams events from files

ganglia Reads Ganglia packets over UDP

gelf Reads GELF-format messages from Graylog2 as
events

gemfire Pushes events to a GemFire region

generator Generates random log events for test purposes

github Reads events from a GitHub webhook

graphite Reads metrics from the graphite tool

heartbeat Generates heartbeat events for testing

54 DST 2018

logstash-input-beats

logstash-input-cloudwatch

logstash-input-

couchdb_changes

logstash-input-
drupal_dblog

logstash-input-
elasticsearch

logstash-input-eventlog

logstash-input-exec

logstash-input-file
logstash-input-ganglia

logstash-input-gelf

logstash-input-gemfire
logstash-input-generator
logstash-input-github
logstash-input-graphite

logstash-input-heartbeat

aggregate Aggregates information from several events originating
with a single task

alter Performs general alterations to fields that the mutate filter
does not handle

anonymize Replaces field values with a consistent hash

cidr Checks IP addresses against a list of network blocks

cipher Applies or removes a cipher to an event

clone Duplicates events

collate Collates events by time or count

csv Parses comma-separated value data into individual fields

date Parses dates from fields to use as the Logstash timestamp
for an event

de_dot Computationally expensive filter that removes dots from a
field name

dissect Extracts unstructured event data into fields using
delimiters

dns Performs a standard or reverse DNS lookup

drop Drops all events

elapsed Calculates the elapsed time between a pair of events

54

logstash-filter-
aggregate

logstash-filter-alter
logstash-filter-
anonymize
logstash-filter-cidr
logstash-filter-cipher
logstash-filter-clone
logstash-filter-collate
logstash-filter-csv

logstash-filter-date

logstash-filter-de_dot

logstash-filter-dissect

logstash-filter-dns
logstash-filter-drop

logstash-filter-
elapsed

cloudwatch

csv

datadog

datadog_metrics

elasticsearch

email

exec

file

ganglia

gelf

google_bigquery

google_cloud_storage

graphite
graphtastic
hipchat

http

Aggregates and sends metric data to AWS
CloudWatch

Writes events to disk in a delimited format

Sends events to DataDogHQ based on
Logstash events

Sends metrics to DataDogHQ based on
Logstash events

Stores logs in Elasticsearch

Sends email to a specified address when
output is received

Runs a command for a matching event
Writes events to files on disk
Writes metrics to Ganglia's gmond

Generates GELF formatted output for
Graylog2

Writes events to Google BigQuery

Writes events to Google Cloud Storage

Writes metrics to Graphite
Sends metric data on Windows
Writes events to HipChat

Sends events to a generic HTTP or HTTPS

andnnint

logstash-output-cloudwatch

logstash-output-csv

logstash-output-datadog

logstash-output-

datadog_metrics

logstash-output-elasticsearch

logstash-output-email

logstash-output-exec
logstash-output-file
logstash-output-ganglia

logstash-output-gelf

logstash-output-
google_bigquery

logstash-output-
google_cloud_storage

logstash-output-graphite
logstash-output-graphtastic
logstash-output-hipchat

logstash-output-http

mn Logstash Grok

Grok iIs for parsing unstructured log data

text patterns into something that matches your
logs.

Grok syntax: %{SYNTAX:SEMANTIC}
Regular and custom patterns
A lot of exiting patterns:

Debug Tools: http://grokdebug.herokuapp.com/

55 DST 2018 55

https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns

mn Example with NETACT Log

29869;10/01/2017 00:57:56;;Major;PLMN-PLMN/BSC-401441/BCF-137/BTS-
403;XYZ01N;ABCO08;DEF081;BTS OPERATION DEGRADED;00 00 00 83 11
11;Processing

Simple Grok

1| |finput {

2 file {

3 path == "/tmp/alarmiest?.ixt"”

4 start _position =="beginning"

5 1

6 1}

7 filter {

8 grok {

9 match { g "S{NUMBER : ALarmID} ;%{DATESTAMP : Start} ;%{DATESTAMP :End} ;%{WORD: Severity} ;%{NOTSPACE :NatworkType} ;%{NOTSPACE :BSCName} ;% {NOTSPACE : St2
19 1

11 1}

12 output {

13| stdout {}

14 gsu {

15 fields ==['AlarmID', 'Start', 'Stop', 'Severity', 'NetworkIype', 'BSCName', ' 'StationName’','Celllame’, 'Alarmlnfo’, 'Extra', 'AlarmStatus’']
L6 path == "/imp/test-%{+000-MM-gdd} . txt"

17|}

18}

56 DST 2018 56

mn Apache Nifi

= From NSA
= http://nifi.apache.org/

= Main concepts:

= Processor. components to handle data, such as
download, store, transform, etc.

* FlowFile: describes how different components are
composed to create pipelines for data ingestion

* Provenance (for data governance): see all usage
records in detall

57 DST 2018 57

8 JWM Q Web Server

£ Flow Controller

Processor 1 Extension N

FlowFile Content Provenance
Repository Repository Repository

https://nifi.apache.org/docs.html

58 DST 2018 58

mn Example

3 tandar =

In 0(0 bytes) 5 min
Read/Write 0bytes / 17.81MB 5 miin
Ot 669 (17 81 MB)
e

Tasks/Time 7/00:05:12.578

Name success
Cueued 0(0 bytes)

S
In 668 (17.8 MB)
Read/Write 0bytes/0bytes
Out 668 (17.8 MB)
Tasks/Time 772/00:00:00.700 5 miin

\

Name success
Cueved 00 bytes)

R
Name success In 00 bytes) 5 m
e > ytes)
L i :n‘l";;]ME‘ ™ Queued 0(0bytes) Read/Wirite 0 bytes /Dbytes 5
m!“ e nf’,"z Pbytes - : = Out (0 bytes) Sm
Ll — Tasks/Time 0/00:00:00.000 Sm

Tasks'Time 671/ 00:00:00. 204

DST 2018 59

Processing

COMPLEX EVENT
PROCESSING

DST 2018 60

IS Dataflow programming and
streaming processing

= Data exchange between tasks
= Links in task graphs reflect data flows

= Streaming processing

= Centralized or distributed (in terms of computing
resources)

= Various applications

= CEP is just one type of applications of streaming
processing

= Note: we will go further some advanced
streaming processing in Lecture 5

DST 2018 61

mn Centralized versus distributed
processing topology

Two views: streams of events or cloud of events

Centralized processing Distributed processing
Proce
in Proces
Event cloud node sing
Proces ™\ - node
sin Pr(_)ces
node | node| node SiNn
node
Usually only Code processing events and
gueries/patterns are written topologies need to be
written

DST 2018 62

mn Goals of complex event processing

= Group and process events in a specific time
(time) and space (size) constraints
» Detect special situations
* Finding correlation among events
= Aggregation results

= Special case of streaming processing

DST 2018 63

mn TIBCO Systems

* Deep Machine Learmning

* ETL Processes/Historical Analytics
M i Historical
BE—— 3 * Data Lakes Context

¢ { Real-Time
Aler!S/

& g * Hadoop/Related Technologies Dashboard

Notifications

L Y4

* Real-Time Analytics (R, PMML) Continuous

Integration i
Event-Driven Rules Queries
* * Event Windows/Patterns
Adapters / * Context and State
Channels .
- v/
Data Collection \ Big Data Architecture “Actionable”
\ and Ingest j Combined with Event-Driven Rule Processing \ Visualization /

Source: http://www.tibco.com/blog/2015/10/05/how-to-extend-big-data-
architectures-with-rules-and-visualization/

DST 2018 64

WSO2 Carbon

CEP/Siddhi

DST 2018

Complex Event Processor

Wih JSONXMLI Texr—

M >
f H‘_wsozem?—. l—ﬂ\"> Siddhi
._——/ E;'a 2

Filter

Transformation

gV‘!‘GOW +{ Aggregation, group by }
oin

Event Sequence

i Event Table

SOAP | REST
v with JSONXMUText

WSO2 Events (Thrift)

t

** Performance
Up to 6M Events/Sec on same JVM &
About 250K over Network

Source:
https://docs.wso2.com/display/CEP420

65

>
o
Q
O
=
D
L
S
~

-] 0o -l

) o c o of

£ 7] = =)

g o 5 g | o

S | &% 3 s | &

= | =& S 2 £ | <8
o £ 9 3 3 £ > < @ 2
€ | &5 | B8 £E8 Tz | "/
5 Od | F& LS | O6 | =&
il : |
o3
P DataStream API DataSet API
% Stream Processing Batch Processing
g Runtime
& Distributed Streaming Dataflow
>
2 Local Cluster Cloud
a Single JVM Standalone, YARN GCE, EC2

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/internals/components.html

DST 2018 66

mn Common concept in these systems

67

The way to connect data streams and obtain events

* Focusing very much on connector concepts and well-defined
event structures (e.g., can be described in XML, JSON, POJO)

= Assume that existing systems push the data
The way to specify “analytics”

» Statements and how they are glued together to process flows of
events

= High-level, easy to use
The engine to process analytics requests

= Centralized in the view of the user = so the user does not have
to program complex distributed applications

= Underlying it might be complex (for scalability purposes)
The way to push results to external components

DST 2018 67

Window

m4 L . . m2 | ml A stream of events

» Arrival order

Sliding/Tumble window size:
time or size of events

If we

» specify a set of conditions for the window and events within the
window

then we can

« get a set of events filtered from the window that match these
conditions

Conditions: can be specified using an SQL-alike language or pre-

defined functions

DST 2018 68

ISl Event Representation, Streams and
Views

= Event sources: via MOM, files, different 10
adapters/connectors, etc.

= Event representation & views

= POJO (Plain Old Java Object), Map, Object-array, XML
= SQL-alike tables

= Event Stream
= Events ordered based on their arrival times

= Event Sink

= A component receiving events via its listener that declares
some statements on interesting events

DST 2018 69

mn Windows and Times

Time windows
Ewvent

i i b
T - P e & — S = v 4 Event streamr

Count{3) Windows

Flink Flink
Data Source Window Operator

= — @0 — D —01

Event Producer Message Queue

@ Event ®Ingesfmn @ Window

Time Time Pmc:essfng
Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/concepts/programming-model.html ~ Time

DST 2018 70

mn Window size and slide

4 | winfiow 1 | windtI:Jw 3 | |
user 1
user 2
user 3
|
: : window2 | windgw 4 :
|- T > | | I |
! / | < > ! . :
T -
/ l time

window size window slide
Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/stream/operators/windows

DST 2018 71

mn Batch/Tumbling Windows

A
1 window 1 ; window 2 , window 3 , window 4 ; window 5

|
| | | |

user! | [@@ ® 000 00 O @ .
| | |

|

|

user 2

user 3

\ >
time
window size
Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/stream/operators/windows.html

DST 2018 79

DST 2018

Flink CEP Patterns

Pattern Operation

begin(#name)

begin(#pattern_sequence)

next(#name)

next(#pattern_sequence)

followedBy(#name)

followedBy(#pattern_sequence)

Description

Defines a starting pattern:

Pattern<Event, 7> start = Pattern.<Event>begin("start");

Defines a starting pattern:

Pattern<Event, ?> start = Pattern.<Event>begin(
Pattern.<Event=begin("start"}.where(...).followedBy("middle").where(...)
):

Appends a new pattern. A matching event has to directly succeed the previous matching
event (strict contiguity):

Pattern<Event, 7> next = start.next("middle");

Appends a new pattern. A sequence of matching events have to directly succeed the
previous matching event (strict contiguity):

Pattern<Event, ?> next = start.next(
Pattern.<Event>begin("start").where(...).followedBy("middle").where(...)
):

Appends a new pattern. Other events can occur between a matching event and the
previous matching event (relaxed contiguity):

Pattern<Event, 7> followedBy = start.followedBy("middle");

Appends a new pattern. Other events can occur between a sequence of matching events
and the previous matching event (relaxed contiguity):

Pattern<Event, 7> followedBy = start.followedBy(
Pattern.<Event=begin("start").where(...).followedBy("middle").where(...)
);

Source: https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/cep.html

n Flink CEP Patterns

Pattern Operation Description

where(condition) Defines a condition for the current pattern. To match the pattern, an event must satisfy the
condition. Multiple consecutive where() clauses lead fo their conditions being ANDed:

pattern.where(new IterativeCondition<Event>() {
@0verride
public boolean filter(Event value, Context ctx) throws Exception {
return ... // some condition
}
1

or{condition) Adds a new condition which is ORed with an existing one. An event can match the pattern only if
it passes at least one of the conditions:

pattern.where(new IterativeCondition<Event=() {

@0verride
public boolean filter(Event value, Context ctx) throws Exception {
return ... // some condition
}
}).or(new IterativeCondition<Event>() {
@0verride
public boolean filter(Event value, Context ctx) throws Exception {
return ... // alternative condition
}
H:
until(condition) Specifies a stop condition for a looping pattern. Meaning if event matching the given condition

occurs, no more events will be accepted into the pattern.
Applicable only in conjunction with one0rMore()

NOTE: It allows for cleaning state for corresponding pattern on event-based condition.

pattern.one0rMore().until{new IterativeCondition<Event>() {

@0verride

public boolean filter(Event value, Context ctx) throws Exception {
return ... // alternative condition

}

H:
Source: https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/cep.html

DST 2018 74

ISl Example with Base Transceiver
Station

Data

station_id,datapoint_id,alarm_id,event_time,value,valueThreshold,
ISActive,storedtime

1161115016,121,308,2017-02-18 18:28:05 UTC,240,240,false,
1161114050,143,312,2017-02-18 18:56:20 UTC,28.5,28,true,
1161115040,141,312,2017-02-18 18:22:03 UTC,56.5,56,true,
1161114008,121,308,2017-02-18 18:34:09 UTC,240,240,false,
1161115040,141,312,2017-02-18 18:20:49 UTC,56,56,false,

DST 2018 75

DST 2018

Simple example

final RMQConnectionConfig connectionConfig = new RMQConnectionConfig.Builder()
.setUri{args[Q])
Cbuild();
final DataStream<String= stream = env
.addSource(new RMJSource<String=(
connectionConfig,

argsil], AMQP Connector

new SimpleStringScheoma()))

.setParallelism(l);

DataStream<AlarmEvent= btsStream;
btsStream = stream.flatMap(new BTSParser());

Pattern<AlarmEvent, ?= pattern = Pattern.<AlarmEvent=begin{ 'start").whaere(new SimpleCondition<AlarmEvent=() {
@0verride
public boolean filter(AlarmEvent value) throws Exception {
System.out.println{"Start event");
return value.zlarm id.equals("30

I3
1) .next('middle")
.followedBy("end") .where(new SimpleCondition<AlarmEvent=() {
@0verride
public boolean filter({AlarmEvent value) throws Exception {

System.out. intln{"End event");
RO AL Patterns
1 /4 within(Time.seconds (3060

PatternStream<AlarmEvent> patternStream;
patternStream = CEP.pattern(btsStream.keyBy(new AlarmkeySelector()), pattern);

final DataStream<String= alerts = patternStream.select(new PatternSelectFunction<AlarmEvent, String=() {
@0verride
public String select(Map<String, List<AlarmEvent== pattern) {
AlarmEvent first = pattern.get{"start") .get(0);
AlarmEvent second = pattern.get('=nd") .get(0);
final String result ="Detected: " + first.toString() + " --= " + second.toString();
System.out.println("FOUND: "+result);
return result;

}

1)
RMQSink<String= sink =rnew RMQSink<=String=(

arasizl, Output

new SimpteStringSchema());

alerts.addSink(sink) ;

76

Apache Flink Dashboard @ ERSIEvent o] o]o]2]of8]oo]o] Cancel
Overview
+ -
Source: Gustom Source -> Fl FlatSelectCepOperator -> Si
at Map —» nk: Unnamed
HASH
Subtasks
Agaregate task statistics by TaskManager
2018-03-20, 2018-03-20, 2m28s Source: Custom Source -> Flat Map 0B 0 190 8 1 o] [RUNNING |
21:06:44 21:09:13 KB
a
o]
2018-03-20, 2018-0320. 2m28s FlatSelectGepOperator -> Sink: Unnamed 190KB 8 0B 0 1 0] [RuninG |
21:06:44 21:09:13
a
a

DST 2018 77

DST 2018

1 CET 2017 alarm_1id=308 with value =241.0 --> station_id=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_1id=303 with value =999999.08'
[x] Received 'Detected: station_id=1161115006 for datapoint_id=121
3 CET 2017 alarm_id=308 with value =240.0 --> station_i1d=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_id=303 with value =999999.6'
[x] Received 'Detected: station 1d=1161115006 for datapoint id=121
@ CET 2017 alarm_id=308 with value =241.0 --> station_id=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_id=303 with value =999999.6'
[x] Received 'Detected: station id=1161115006 for datapoint id=121
5 CET 2017 alarm_id=308 with value =240.0 --> station_1d=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_id=303 with value =999999.68'
[x] Received 'Detected: station id=1161115006 for datapoint id=121
2 CET 2017 alarm_id=308 with value =241.0 --> station id=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_id=303 with value =999999.6'
[x] Received 'Detected: station id=1161115006 for datapoint id=121
6 CET 2017 alarm_id=308 with value =240.0 --> station_id=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_1id=303 with value =999999.08'
[x] Received 'Detected: station_id=1161115006 for datapoint_id=121
7 CET 2017 alarm_id=308 with value =241.0 --> station_i1d=1161115006
at Sat Feb 18 19:30:20 CET 2017 alarm_id=303 with value =999999.6'
[x] Received 'Detected: station 1d=1161115006 for datapoint id=121
4 CET 2017 alarm_id=308 with value =240.0 --> station_id=1161115006
at Sat Feb 18 19:42:55 CET 2017 alarm_id=303 with value =999999.6'

/8

truong@truong-Carbon2: ~fmyprojects/mygit/bigdatamcnanalytics/basicfcommunication/amqp/direc

for datapoint_id=116

at Sat Feb 18 19:31:4
for datapoint_1id=116

at Sat Feb 18 19:32:5
for datapoint_id=116

at Sat Feb 18 19:57:1
for datapoint_id=116

at Sat Feb 18 20:14:5
for datapoint_id=116

at Sat Feb 18 19:42:2
for datapoint id=1

at Sat Feb 18 19:42:4
for datapoint_1id=116

at Sat Feb 18 20:14:5
for datapoint_id=116

mn SQL-alike CEP

= We can register/view stream as a table (like

SQL)

= Then apply SQL-alike statements with windows
for detecting events and patterns

* Tools: Esper, WSO2, and certain streaming
databases

DST 2018 79

mn Example of WSO2 Siddhi

80

Pass-through Filters

from <stream-name> -
select ({<attribute-name>}| “*|) from <stream-name> {<conditions>}

select ({<attribute-name>}| “*|)
insert into <stream-name>

insert into <stream-name>

Windows

from <stream-name> {<conditions=}window.<window-name>(<parameters>)
select ({<attribute-name=} | **'|)
insert [<output-type>] into <stream-name>

Source: https://docs.wso2.com/display/CEP420/SiddhiQL+Guide+3.1

DST 2018 80

mn SQL-alike conditions

@Import('mobifonetrainingopensignal:1.0.0")

define stream inStream (meta_ USERPHONE int, meta_TIME long, correlation_lat float,
correlation_lon float, GSM_BIT_ERROR_RATE float, GSM_SIGNAL_STRENGTH float,
LOC_ACCURACY float, LOC_SPEED float);

@Export(‘OutputSignal:1.0.0")
define stream OutputSignal (avgSignalStrength double, avgBitRateError double);

from inStream#window.lengthBatch(5)

select avg(GSM_SIGNAL_STRENGTH) as avgSignalStrength, avg(GSM_BIT_ERROR_RATE) as
avgBitRateError

insert into OutputSignal;

DST 2018 81

mn Put things together

A data pipeline of stream receivers - event processor - event publishers

CEP Event Flow

Event Receivers Event Streams Execution Plans Event Publishers

Checksignal]—'lﬂ.ltputﬁignal:l.ﬂ.ﬂ —'I resultlogger]
\—-l MOTTResult J
lcepmuhiphuneupensignartﬁt H mobifonetrainingopensignal :1.0.0 —ultﬁtrnail H resultStream:1.0.0 |—ulgmai|t§t]

lGuuntBi‘tH.atEErrur:l.ﬂ.ﬂ lugger]

g2 DST 2018 82

mn Example with WSO2 Carbon CEP

i I
: tputSignal:1.0.0 resultiogger |
| -) 1
1 M ult 1
I I
- 4 . \

‘ lcepmnhiphnnenpensignaltﬁt \’—v mobifonetrainingopensignal : 1.0.0 -ltﬁtrnail]I resultStream:1.0.0 —-Igrnaih:ﬁt] | = k

Source | _. = - Lo Sin

1 CountBitRateError:1.0.0 I
I I
I I
I I
I

__

g3 DST 2018 83

mn Get a high-level view

Check:
http://de.slideshare.net/alessandro _margara/processing-flows-of-information-debs-2011

Be the first to clip this slide

(88558~

dependable evolvable pervasive software engineering group

Processing Flows of Information
From Data Streams to Complex Event Processing

Gianpaolo Cugola and Alessandro Margara
Politecnico di Milano

Dip. Elettronica e Informazione
[cugola,margara]@elet.polimi.it

“Processing Flows of Information: from data streams to complex event processing”
ACM Computing Surveys, to appear (but available from: http:/home.dei.polimi.it/cugola)

3.348 views

Processing Flows of Information DEBS 2011
DST 2018 84

Partially covered in Lecture 5

BEYOND BASIC MESSAGE
PROCESSING

DST 2018 85

mn Datalake with messaging

Batch Layer

E
S

Speed Layer

Serving Layer
1

Messaging Layer
Data Ingestion Layer

Lambda Layer

Source Systems
Data Acquisition Layer

Data Storage Layer

i

Figure source: Data Lake for Enterprises by Pankaj Misra; Tomcy John Published by
Packt Publishing, 2017

DST 2018 86

mn Cloud services and big data analytics

Operation/Management/
b Business Services
Data sources Messaging systems Stream processing Warehouse
(sensors, files, database, — (€.9., Kafka, AMQP, — systems Analytics
queues, log services) MQTT) (e.g. Apex, Storm, Flink,
WSO02, Google Dataflow)

Storage and Database
(S3, InfluxDB, HDFS, Cassandra, <
MongoDB, Elastic Search etc.)

Batch data processing
systems
T (e.g., Hadoop,lAirfloW, Spark)

\ 4

Elastic Cloud Infrastructures
(VMs, dockers, OpenStack elastic resource management tools, storage)

DST 2018 87

< —

mn Data Processing Framework

= Batch processing
= Mapreduce/Hadoop
= Scientific workflows

= (Near) realtime streaming processing
* Flink, Apex, Kafka SQL, Storm
= Hybrid data processing
= Summingbird, Apache Kylin
* Impala, Storm-YARN
= Apache Spark

Take a short read: http://www.infog.com/articles/stream-processing-hadoop

DST 2018 88

mn Conceptual View

Analytics (Application Level)

Data Analysis

_—) S

AUEWEESE Streaming/Online Batch Data Hybrid Data
Tools, Data Processing Processing Processing
Processes & r o
Models ". B
Data Processing Framevvdfks~
(Near) Static data

realtime data

DST 2018 89

I Recap

So how can you use messaging techniques for
complex distributed applications/systems?

= Reactive patterns

= Asynchronous communications
= Large-scale integration

= Big data

= 7

DST 2018 90

mn Further materials

. Java Message Service: http://www.oracle.com/technetwork/java/index-jsp-142945.html

" Java Message Service specification, version 2.0, available from:
http://jcp.org/en/jsr/detail ?id=343

" http://www.espertech.com/esper/documentation.php

" Miyuru Dayarathna and Toyotaro Suzumura. 2013. A performance analysis of system s, s4, and
esper via two level benchmarking. In Proceedings of the 10th international conference on
Quantitative Evaluation of Systems (QEST'13), Kaustubh Joshi, Markus Siegle, Mariélle
Stoelinga, and Pedro R. D'Argenio (Eds.). Springer-Verlag, Berlin, Heidelberg, 225-240.
DOI=10.1007/978-3-642-40196-1_19 http://dx.doi.org/10.1007/978-3-642-40196-1_19

. https://code.facebook.com/posts/872547912839369/improving-facebook-s-performance-on-
android-with-flatbuffers/

DST 2018 91

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/1.1/html/Messaging_User_Guide/sect-Messaging_User_Guide-Introduction_to_RHM-The_AMQP_0_10_Model.html
https://camel.apache.org/enterprise-integration-patterns.html
https://camel.apache.org/enterprise-integration-patterns.html
http://www.eaipatterns.com/
http://docs.oracle.com/javaee/7/tutorial/doc/home.htm
http://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/index.html

Tul 1
Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien
hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong

DST 2018 92

