
Programming Dynamic Features and

Monitoring Distributed Software Systems

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong

Twitter: @linhsolar

DST Summer 2018, Lecture 3

DST 2018 1

DST 2018 2

Photo from “Lessons Learned From a Fast Growing Startup”, Arul Kumaravel, Vice President, Engineering, Grab at

CloudAsia2016, Singapore

DST 2018 3

„In the context of computer programming, instrumentation

refers to an ability to monitor or measure the level of a

product's performance, to diagnose errors and to write trace

information”
https://en.wikipedia.org/wiki/Instrumentation_%28computer_programming%29

“To monitor or monitoring generally means to be aware of the

state of a system, to observe a situation for any changes

which may occur over time, using a monitor or measuring

device of some sort.”

https://en.wikipedia.org/wiki/Monitoring

Programming dynamic features enable instrumentation and

monitoring

Full stack monitoring

DST 2018 4

 You might need to

monitor from OS to the

application components

 You might own or just

rent them

 Artifacts: binary,

runtime, source

 Monitoring functions

about computation,

data and network
OS

Virtual Machine

Middleware

Service
Container

Web
Service

Container

Application

Container

Middleware

Monitoring at the Large-scale

DST 2018 5

 Many distributed components across various enterprise boundaries

 Events/Measurement collection, Storage, Analytics and Visualization

ElasticSearch

MQTT broker
Notification

Service

(REST, NodeJS)

Blob File Server

UserApp

Localfile system

(e.g. /opt/data/airflow)

Computing servers

UI

REST-based

workflow

Analytics of telco logs

DST 2018 6

Grab instrumentation and monitoring

Photo from “Lessons Learned From a Fast Growing Startup”, Arul Kumaravel, Vice President, Engineering, Grab at

CloudAsia2016, Singapore

Key techniques for today’s lecture

 Fundamentals for supporting dynamic features

 Code inspection: Dynamic loading, Reflection,

Dynamic proxy

 Instrumentation and Program Analysis

 Annotation

 Aspect-oriented Programming

 Large-scale cloud native applications and

systems

 full-stack and large-scale system and application

monitoring

DST 2018 7

DYNAMICITY NEEDS

DST 2018 8

Dynamicity needs (1)

 Monitoring, performance analysis, tracing,

debugging

 Dependent on specific contexts  static ways are

not good due to overhead and flexibility requirements

 Common concerns among several

classes/objects/components

 Do not want to repeat programming effort

 Provide metadata information for

lifecycle/configuration management

 Provisioning and runtime configuration

DST 2018 9

Dynamic needs (2)

 Provide metadata information for code

generation

 Service interfaces and validation

 Flexible software delivery for some core

functions (e.g., patches)

 Enable continuous update without

recompiling/redeploying applications

 Extensibility

DST 2018 10

Main activities for programming

dynamic features

DST 2018 11

Program

source

Program

Binary/byte

code

Program running

processes

Dynamic

loading

Libraries/Classes

Static

Instrumentation
Modified

program source

Static

Instrumentation

Modified program

binary/bytecode

Dynamic

Instrumentation

Reflection

Probes (code snippets,

annotations, etc.)

 These activities

 Design time and runtime

 Tightly coupled or loosely

coupled

 Within the same tool or different

tools

 Maybe triggered by the program

its self

Compilation Execution

Probes (code snippets,

annotations, etc.)

CODE INSPECTION

DST 2018 12

We want to understand the

program

 How do we know program structures?

 Can we analyze the program structure within

program processes during runtime?

 Are we able to examine statically and

dynamically linked code?

 What kind of tasks we could do if we know the

program structure?

DST 2018 13

Code inspection

 Code inspection/analysis

 Analyze different forms of program code at design

and runtime

 Source code analysis

 Bytecode and binary code analysis

 Program’s running process analysis

DST 2018 14

Dynamic loading

 Code can be dynamically loaded into a running

program

 At runtime, libraries are loaded into a program

memory

 Variables, functions, etc. in these libraries can be

used by the program

 Dynamic linking: no libraries are needed at compile

or before loading at runtime

 Implementations

 C: void *dlopen(const char *filename, int flag);

 Java ClassLoader and System.loadLibrary(String

libname)
DST 2018 15

Code/Bytecode/Binary inspection

 Read and build program structures from

(byte)code

 Example, using javap –c to see Java bytecode

 Tools to process bytecodes

 Javassist (https://github.com/jboss-

javassist/javassist/releases)

 BCEL (http://commons.apache.org/proper/commons-

bcel/)

 CGLIB (https://github.com/cglib/cglib)

 Cannot see the dynamic code which will be

loaded at runtime

DST 2018 16

http://commons.apache.org/proper/commons-bcel/

Reflection

 Allow a running program to introspect its own

code structuren (e.g., methods and fields of a

class)

 Enable the creation and invocation of object

instances at runtime

 Basic feature in most current object-oriented

languages

DST 2018 17

Example: Reflection in Java

DST 2018 18

Source code

Example: Reflection in Java

DST 2018 19

Read structures

Call methods

Example: Reflection in Java

DST 2018 20

Source code

Inspection output

Reflection – Benefit?

 Benefits?

• Allows for flexible applications and design patterns

 Disadvantages:
• Complex solutions are difficult to write and error-prone (method

names in strings, etc.)

• Performance degradation

• Security restrictions

• Reflection is read-only – it is not (easily) possible to add

methods or change the inheritance hierarchy of an object

DST 2018 21

Dynamic proxy

 Allow us to implement a proxy class whose

interfaces specified at runtime

 Create proxy instance with a set of interfaces

 Forward method invocations on interfaces of the

proxy instance to another object

DST 2018 22

Source: http://en.wikipedia.org/wiki/Interceptor_pattern

Source: http://en.wikipedia.org/wiki/Adapter_pattern

Dynamic Proxy – Conceptual Model

DST 2018 23

Dynamic proxy

class
Dynamic proxy

instance

Class object

getProxyClass ()

InvocationHandler

invoke(proxy instance, method1, args…)

Caller

Interface1

Interface2

Interface3

Interface1 Interface2

Interface3

getProxyInstance ()

Interface1

Interface2

Interface3

Example of Dynamic Proxy

DST 2018 24

Interfaces (Methods to be invoked on the proxy)

Handler

(Proxy behavior)

must implement

Example of Dynamic Proxy

DST 2018 25

PROGRAM

INSTRUMENTATION AND

ANALYSIS
DST 2018 26

Program instrumentation

DST 2018 27

 A process to inspect and insert additional

code/meta-data, etc., into a program/process

 Static and runtime

 Manual or automatic

 Examples:

 Source code annotations/directives

 Byte code modification

 Dynamic code modification at loading time

 Process instructions at runtime

Static versus Dynamic

instrumentation

 Dynamic instrumentation

 Perform the instrumentation during the process running

 E.g., Dyninst (http://www.dyninst.org)

 Java support:

 E.g., Dtrace + Btrace,

http://www.oracle.com/in/javaonedevelop/dtrace-j1-

sritter-400745-en-in.pdf

 Java instrumentation API

 Some works on static + dynamic instrumentation based on

dynamic class loading mechanisms

 Static instrumentation

 Source code, bytecode and binary code levels

 In many cases: a combination of different methods

DST 2018 28

http://www.dyninst.org/
http://www.oracle.com/in/javaonedevelop/dtrace-j1-sritter-400745-en-in.pdf

Where we can insert instrumented

code into the program execution?

 At any join point: a point in the control flow of a

program

 Examples:

 method calls, entry/exit of method body, statements

(set/get, assignment, etc.)

DST 2018 29

If we instrument probes before, after or around

these join points, when the program execution

reaches these points, the probes will be

executed accordingly.

Example: Dynamic call graph

DST 2018 30

Professor.class:

doWork(…) {

…

C1.start(..);

PostDoc.doWork(…);

C1.stop(..);

…

return …

}

PostDoc.class:

doWork(…) {

…

C2.start(..);

Student.doWork(…);

C2.stop(..);

…

return …

}
Student.class:

doWork(…) {

…

C3.start(..);

//do something;

C3.stop(..);

…

return …

}

“A call graph is a directed graph that represents

calling relationships between subroutines in a

computer program.”
https://en.wikipedia.org/wiki/Call_graph

Example: Dynamic call graph

DST 2018 31

Professor.class:

doWork(…) {

…

C1.start(..);

PostDoc.doWork(…);

C1.stop(..);

…

return …

}

PostDoc.class:

doWork(…) {

…

C2.start(..);

Student.doWork(…);

C2.stop(..);

…

return …

}

Student.class:

doWork(…) {

…

C3.start(..);

//do something;

C3.stop(..);

…

return …

}

How does the

execution

sequence of

C1, C2, and C3

look like ?

C1.start()

C2.start()

C3.start()

C3.stop()

C2.stop()

C1.stop()

If we want to deal with

certain concerns at

join points

DST 2018 32

C1, C2, and C3: can be any

kind of additional actions

instrumented into the

program

Professor.class:

doWork(…) {

…

C1.start(concerns);

PostDoc.doWork(…);

C1.stop(concerns);

…

return …

}

PostDoc.class:

doWork(…) {

…

C2.start(concerns);

Student.doWork(…);

C2.stop(concerns);

…

return …

}

Student.class:

doWork(…) {

…

C3.start(concerns);

//do something;

C3.stop(concerns);

…

return …

}

DST 2018 33

When and where we should use inspection,

reflection, or instrumentation in our

continuous integration (CI) pipelines?

Build Test Deploy

SOURCE CODE ANNOTATION

DST 2018 34

Annotation

DST 2018 35

 Annotations are added into source code

 Can be considered as static instrumentation

 Can be considered as a part of typical programming

activities

 Goal: provide additional metadata/instructions

 For supporting compilation process

 For code generation at compiling and deployment

 For runtime processing

 Etc.

 Very popular in Java/C#/Python, …

Java Annotation

DST 2018 36

 Format

@AnnotationName (….)

 Pre-defined versus user-defined

 Pre-defined: supporting by runtime systems or some

well-known libraries in programming frameworks

 User-defined: it is up to the developer to define

annotations

 Points at which annotations can be added

 declarations of classes, fields, methods, and other

program elements

 type uses (Java 8, e.g. @NonNull String serverName)

Example of EE Annotation Support

DST 2018 37

 Common annotations in Java

(https://jcp.org/en/jsr/detail?id=250)

 Supported in Spring annotations

(http://docs.spring.io/spring/docs)

 JAX-RS (https://jax-rs-spec.java.net/)

Source code: https://jersey.github.io/documentation/latest/jaxrs-resources.html

https://jcp.org/en/jsr/detail?id=250

Java Annotation Processing

 Parsing source codes

 Reflection APIs also return Annotation

Method.class: public Annotation[]

getDeclaredAnnotations()

 Reading bytecode to get Annotation

DST 2018 38

Class.java with

@Annotation
Javac -

processor

Annotation

Processor Classes

Class.class + additional

information + new java

source, etc.

Processing Model in Java compilation

Example – your case study with

New Relic

https://docs.newrelic.com/docs/agents/java-

agent/custom-instrumentation/java-

instrumentation-annotation

@Trace

protected void methodWithinTransaction() {

// work

}

DST 2018 39

Check:

https://docs.newrelic.com/docs/agents/java-agent/custom-instrumentation/java-instrumentation-annotation

ASPECT-ORIENTED

PROGRAMMING

DST 2018 40

Cross-cutting concerns

 We have some common concerns that across

multiple objects/methods

 Tracing, measuring time, logging, checking security,

etc.

 We want to have dynamically programming

features to address these concerns

DST 2018 41

Cross-cutting concerns – when,

where and how

 We can use „probes“ instrumented into

targeting programs  creating hooks

 Probes specify code for dealing these concerns

 Probes create addition actions at runtime

 But we need dynamic and flexible way

 Probes are instrumented when and where we need

but they can be replaced!

 How

 Can we use annotation? Can we use dynamic

loading? Bytecode/binary instrumentation? Dynamic

instrumentation?

DST 2018 42

Aspect-Oriented Programing

 Aspect: common feature in various methods,

classes, objects, etc.  crosscutting concern

 Separate from functional concerns and cross-

cutting concerns

 In Aspect-Oriented Software Development (AOSD),

functional concerns are built in the usual way

 Cross-cutting concerns are built as independent

modules

 Combining these two types of concerns using

semi-automatic instrumentation techniques

DST 2018 43

Conceptual model – Aspect

terminologies

 Some java implementations

 AspectJ

 The standard implementation of AOP in Java

 SpringAOP

DST 2018 44

Weaving

Code

Aspect

New Code with

Aspect

Weaving is actually the

„instrumentation” process

AOP Terminologies

 Join Point

 point in the execution, e.g. a call of a method with the

signature “doWork(String)”

 Pointcut

A set of join points (can also be composed using different

operators such as &&, ||, !)

 Advice

 Additional action that should be executed at join points

in a pointcut

 Aspect

 Cross-cutting type and its implementation (advices +

others)
DST 2018 45

Professor.class:

doWork(…) {

…

PostDoc.doWork(…);

…

return …

}

PostDoc.class:

doWork(…) {

…

Student.doWork(…);

…

return …

}
Student.class:

doWork(…) {

…

//do something;

…

return …

}

AOP Terms

DST 2018 46

PointCut1 =

{Join point 1, Join Point 2}

Aspect1 = {Advice, PointCut1}

Join point 1

Advice:

Measure

concern 1

Join point 2

Professor.class:

doWork(…) {

…

C1.start(concern1)

PostDoc.doWork(…);

C1.stop(concern1)

…

return …

}

PostDoc.class:

doWork(…) {

…

C2.start(concern1)

Student.doWork(…);

C2.stop(concern1)

…

return …

}
Student.class:

doWork(…) {

…

//do something;

…

return …

}

AOP Terms

DST 2018 47

PointCut1 =

{Join point 1, Join Point 2}

Aspect1 = {Advice, PointCut1}

Join point 1

Advice:

Measure

concern 1

Join point 2

generated code for addressing

concerns

Main types of Join Points

 Execution: when a method body executes

execution(public void doWork(String))

 Call: when a method is called

call(void doWork(String))

 Handler: when an exception handler executes

handler(ArrayOutOfBoundsException)

DST 2018 48

Main types of Join Points

 this: when the current executing object is of the

specified type

this(Student)

 target: when the target object is of the specified type

target(Student)

 within: when the executing code within the specified

class

within(Student)

 withincode: within a method

withincode(void doWork())

 set/get: field access/references

set(String Student.name)
DST 2018 49

Call vs. Execution Join Points

 Call matches before or after a method is called (i.e., still

in the scope of the caller)

//call site: call point is here

doWork()

//call site: call point is here

 Execution matches when the method starts to execute

(i.e. already in the scope of the callee)

doWork() {

//call site: call point is here (before)

//...

//call site: call point is here (after)

}

DST 2018 50

Advice

 Advice defines code of aspect implementation that is

executed at defined points

 Main types of advice

before () : methodCall() {

…

}

after () : methodCall() {

…

}

around () : methodCall() {

….

}

DST 2018 51

methodCall is a pointcut

Weaving (Instrumentation)

 The process of merging aspects into the

program code is called weaving 

instrumentation

 Three ways of weaving:

 Compile-Time Weaving (weave as part of source-to-

binary compilation)

 Post-compile Weaving (compile normally, then merge

binaries in a post-compilation step)

 Load-Time Weaving (like binary weaving, but done

when the class is loaded by the classloader)

 Runtime Weaving: using proxy

DST 2018 52

DST 2018 53

Your home work:

Pros and Cons of compile time, binary

and load time weaving

Example of AOP with AspectJ

DST 2018 54

Professor

PostDoc

Student

Example of AOP with AspectJ

DST 2018 55

Professor.class:

public void doWork(String taskName) {

System.out.println("I am a professor. I am doing

"+taskName+" but I ask my postdoc to do this");

new PostDoc().doWork(taskName);

}

public static void main(String[] args) {

Professor professor = new Professor();

professor.doWork("Programming hello.java");

professor.doWork(null);

}

Student.class:

public void doWork(String taskName) {

System.out.println("I am a student. I am doing my

"+taskName+" ");

}

PostDoc.class:

public void doWork(String taskName) {

System.out.println("I am a postdoc. I am doing

"+taskName+" but I ask my students to do this");

new Student().doWork(taskName);

}

1

2

3

4

1

1

1

2

3

4

Example of AOP with AspectJ

DST 2018 56

Professor.doWork()

PostDoc.doWork()

Student.doWork()

Call gaph tracing information

AOP in Spring

 Not all features are supported

 String AOP only method execution join points

 Using Java annotation or XML

 Java Annotation

 @Aspect, @Pointcut, @Before, @After,

@AfterReturning, @Around

 Using XML

 aop:config, aop:aspect, aop:before, etc.

DST 2018 57

What is the underlying mechanism?

 Using dynamic proxy to delegate/process advices

DST 2018 58

Think:

Assume that you run your cloud applications in

different cloud infrastructures, for what kind of tasks

could we benefit from AOP?

Where will we do this in the CI process?

CLOUD APPLICATIONS/SYSTEMS

INSTRUMENTATION AND

MONITORING AT SCALE

DST 2018 59

Full stack monitoring

DST 2018 60

 Combine many

techniques:

instrumentation, API

interface, etc.

 Push and pull methods

 Exact measurement

and sampling

OS

Virtual Machine

Middleware

Service
Container

Web
Service

Container

Application

Container

Middleware

Scale of systems and of monitoring

 Many monitoring components

 Interfaces to different layers (systems and

applications)

 Different monitoring mechanisms

 Scalable middleware for relaying monitoring

data

 Various protocols, HTTP, AMQP,MQTT

 Scalable storage: file systems and time series

data

 Visualization and other types of big/fast data

analytics
DST 2018 61

DST 2018 62

What can we do with messaging, complex

event processing (lecture 2) and dynamic

features programming (lecture 3)?

Building real-world instrumentation and monitoring for

(cloud-based) services

 instrumentation and monitoring ecosystem for

complex distributed systems

Example of log monitoring

DST 2018 63

Figure source: https://blog.cloudera.com/blog/2015/02/how-to-do-real-

time-log-analytics-with-apache-kafka-cloudera-search-and-hue/

Remember Logstash?

DST 2018 64

 Codecs: stream
filters within
inputs or outputs
that change data
representation

 E.g.: multilines
 a single event

64

Source: https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html

Using Beat to collect data

DST 2018 65

https://www.elastic.co/products/beats

Using Fluent-bit for constrained

devices

 Lightweight for

constrainted

devices

 Part of Fluentd

ecosystem

DST 2018 66

Figure source: https://fluentbit.io/documentation/0.12/getting_started/parser.html

Figure source: https://fluentbit.io/

Promethesus Architecture

DST 2018 67

Source: https://prometheus.io/docs/introduction/overview/

Dealing with Cloud application

Logs and traces

 In a distributed cloud application

 Code written in different languages

 Components deployed in distributed machines

 Key issues

 Interoperability (format)

 Scalability

 Correlation across layers and systems

 Multi programming language

DST 2018 68

Example: Fluendt

 Integrated monitoring and logging

 Widely used in cloud systems

DST 2018 69

Figure source: https://www.fluentd.org/architecture

Hello World example

DST 2018 70

Tracing: Google Dapper

 Distributed

tracing

 Open source:

https://zipkin.io/

DST 2018 71

Figure source: Dapper, a Large-Scale Distributed Systems Tracing Infrastructure,

https://research.google.com/pubs/pub36356.html

Tracing: JAEGER from Uber

DST 2018 72

Figure source: https://www.jaegertracing.io/docs/architecture/

OpenTracing concept view

DST 2018 73

Source: http://opentracing.io/documentation/pages/instrumentation/common-use-cases.html

DST 2018 74

Quick check:

What are key issues if you want to monitor

cloud applications across data centers?

Food for thoughts

DST 2018 75

 How would you do the monitoring?

ElasticSearch

MQTT broker
Notification

Service

(REST, NodeJS)

Blob File Server

UserApp

Localfile system

(e.g. /opt/data/airflow)

Computing servers

UI

REST-based

workflow

Build instrumentation and monitoring

for your cloud application/services

DST 2018 76

Your Application

Cloud monitoring services

Your Middleware

Your VM/Docker

Logs/traces/metrics

Instrumentation and monitoring

(aspects, annotation, etc.)

Do a real-world test!

Key takeway (e.g. for exams )

To design your monitoring and instrumentation

solutions together with communication and

storage system middleware

Try to analyze existing examples and tools to see

the complexity of programming dynamic features

and monitoring (not just simple AOP)

Tracing is quite complex but monitoring and

logging you should spend effort to learn!

DST 2018 77

Summary

 Dynamic features programming required by complex

distributed software

 Dynamicity programming can be achieved through

different design and runtime activities

 There are different tools for programming dynamic

features, but we need to combine different techniques

 Understanding which instrumentation techniques should

be used and what will be instrumented is crucial

 Three points you should master

 Basic techniques (inspection, reflection, AOP, etc)

 Integration of basic techniques in programming tasks and CI

 Large-scale cloud instrumentation, monitoring and analysis

DST 2018 78

Further materials

 http://eclipse.org/aspectj/doc/released/progguide

 http://docs.spring.io/spring/docs/current/spring-framework-reference/

 http://docs.oracle.com/javase/tutorial/java/annotations/

 http://commons.apache.org/proper/commons-bcel/

 https://jcp.org/en/jsr/detail?id=160

 http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-

summary.html

 http://docs.oracle.com/javase/8/docs/technotes/guides/reflection

 http://docs.oracle.com/javase/tutorial/reflect/index.html

 https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736

DST 2018 79

http://eclipse.org/aspectj/doc/released/progguide
http://docs.spring.io/spring/docs/current/spring-framework-reference/
http://docs.oracle.com/javase/tutorial/java/annotations/
http://commons.apache.org/proper/commons-bcel/
https://jcp.org/en/jsr/detail?id=160
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/8/docs/technotes/guides/reflection
http://docs.oracle.com/javase/tutorial/reflect/index.html
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736

80

Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at

http://www.infosys.tuwien.ac.at/staff/truong

DST 2018

