mn DST Summer 2018

Virtualization, Elasticity and Performance
for Distributed Applications

Hong-Linh Truong
Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
www.Iinfosys.tuwien.ac.at/staff/truong
@linhsolar

DST 2018 1

mn What this lecture is about?

» Resources and their impact on distributed
systems and applications

= Virtualization
= Resource virtualization
= Elasticity
= Key concepts and techniques

= Performance

= Utilizing virtualization and elasticity for some
performance patterns

DST 2018 2

nlications
Types of distributed applications

| User Interface .4—.

%

r i R

| Processing F]

L

lf R L 4
soree. OO O

_

7 Workflow/process style

Figure sources: http://www.cloudcomputingpatterns.org/Distributed_Application

mn Impact of resources on Distributed
ap

Data-centric pipeline style

= Some questions for DevOps

= How to have a development environment that is similar to the
operational/production one?

= How to utilize computing resources in the best way?
= How to achieve the best performance?

DST 2018 3

mn Recall — Breakdown the complexity

Figure source:Sam Newman, Building Microservices, 2015

Modeled around
business concepts

Hide internal
implementation
details

Highly
observable [Small autonomous

Isolate
failure Deploy
=)

Decentralize all
the things

How to make sure that the underlying resources and
infrastructures are suitable for ,small autonomous services”?

DST 2018 4

IS Concepts of today‘s lecture

[Vmua.izaﬁon]
T

Performance]

DST 2018 5

VIRTUALIZATION

DDDDDDD

mn What is virtualization? A bird view

= Virtualization:

* To abstract low-level compute, data and network resources to
create virtual version of these resources

* Virtualization software creates and manages “virtual
resources” isolated from physical resources

- Virtualization is a powerful concept: we can apply
virtualization techniques virtually for everything!

—>Virtualization is a key enabling technology for cloud
computing and modern computer networks.

DST 2018 7

mn Virtualizing physical resources

Web Services
(e.g. REST)

Service Container
(e.g. cat)

"4

Z
N

-
-~
~

- o

~

Operating System "[~----_

(e.g. Ubuntu) | - -
Physical resources
(e.g. 4 dual-core
CPUs +8GB RAM)

.

So if we just develop
,Web services”, why is it
Important to us?

DST 2018

Web Services
(e.g. REST)

Service Container

Y

I\

(e.g. Tomcat)

A

Operating System
(e.g. Windows)

A

Virtualization layer/resources
(e.g.,1 dual-core CPU, 2 GB RAM)

\\~""I1 - — - - - - = — - — - /)

- N

Operating System
(e.g. Ubuntu)

Physical resources
(e.g. 4-core CPU +8GB RAM)

S Main types of virtualization of

Infrastructures for distributed apps
= Compute resource virtualization
= Compute resources: CPU, memory, 1/O, etc.
= To provide virtual resources for ,virtual machines”
= Storage virtualization
= Resources: storage devices, harddisk, etc.

= To optimize the usage and management of data
storage

= Network Function Virtualization
= Network resources: network equipment & functions

= To consolidate network equipment and dynamically
provision and manage network functions

DST 2018 9

ISl Compute Resource Virtualization
Technologies

= Physical compute resources:
* Individual physical hosts/servers (CPU, memory, 1/O)
= Clusters and data centers

= At the low-level: two main streams
= Hypervisor/Virtual Machine monitor
= Virtual machines (VirtualBox, VMWare, Zen, etc.)

= Containterlization

= Containers (Linux Containers, Docker, Warden Container,
OpenVZ, OCI based containers, etc.)

DST 2018 10

mn Hypervisor/Virtual Machine Monitor

Virtual machine

Guest OS

Virtual Machine
Monitor/Hypervisor

—
ﬁ .

: gLeveIZZ ,

Host OS
—

Physical resources

. J

DST 2018

Another model (Hypervisor level 1)

Network and Storage I/O

Xen Project Hypervisor

Open Network

Source Linux WIndOWS
Storage

Control Interface Drivers

] RAM)’CPU I

Xen Control Interface

Virtualized Hardware

Hardware

https://www.citrix.de/products/xenserver/tech-info.html

11

App 1 App 2 App 3

Bins/Libs Bins/Libs Bins/Libs

Docker Engine

Operating System

Infrastructure
(— oo
A O

https://www.docker.com/what-docker

Aop

LXC
Container

i

Host 05
Hardware

Linux
Contalner

Host 05

Hardware

Dacker
Contalner

App1

OpenvZ
Containar

Host OS
Hardware

Openvz
Container

Source: Rajdeep Dua, A. Reddy Raja, Dharmesh Kakadia:
Virtualization vs Containerization to Support PaaS. IC2E 2014: 610-614
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6903537

DST 2018

We do not dig into low-level technigues in

virtualization, but examine

= How would virtualization techniques enable us
to acquire, utilize and manage resources for
our Devs and Ops of distributed applications
and systems?

= How would such techniques change our
software design?

= How to align on-demand
resources/infrastructures with software using

DST ZEB e m 13

mn Virtual machines versus containers

App
Guest OS

App |

[
[

Container }

Source: Rajdeep Dua, A. Reddy Raja,

Dharmesh Kakadia:

Virtualization vs Containerization to Support
PaaS. IC2E 2014: 610-614

http://ieeexplore.ieee.org/xpl/articleDetalls.jsp
?arnumber=6903537

DST 2018

Parameter | Virtual Machines | Containers

Guest OS Each VM runs on vir- | All the guests share same
tual hardware and Ker- | OS and Kernel. Kernel im-
nel is loaded into in its | age is loaded into the phys-
OWN memory region ical memory

Communi- Will be through Ether- | Standard IPC mechanisms

cation net Devices like Signals, pipes, sockets

etc.

Security Depends on the imple- | Mandatory access control
mentation of Hypervi- | can be leveraged
sor

Performance Virtual Machines suf- | Containers provide near na-
fer from a small over- | tive performance as com-
head as the Machine in- | pared to the underlying Host
structions are translated | OS.
from Guest to Host OS.

Isolation Sharing libraries, files | Subdirectories can be trans-

etc between guests and
between guests hosts
not possible.

parently mounted and can
be shared.

Startup time

VMs take a few mins to
boot up

Containers can be booted up
in a few secs as compared to
VM.

Storage

VMs take much more
storage as the whole OS
kernel and its associ-
ated programs have to
be installed and run

Containers take lower
amount of storage as the
base OS is shared

TABLE |

VM AND CONTAINER FEATURE COMPARISION

mn VM versus containers

120000

100000

10PS

40000 -
20000 -
0 -

80000 7~
60000 -

Random Random Random
Read Write Mixed

& Native
& Docker

KVM

Fig. 6. Random I/O throughput (IOPS).

Source: Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan

Rubio:

An updated performance comparison of virtual machines and Linux

containers. ISPASS 2015: 171-172

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095802

DST 2018

Naiive —+—
Docker net=host volume —«—
12t Docker NAT volume —=— 4 1375
Docker NAT AUFS —a—
g KVM geow =
a2 10 135
2
2
g 8 4 1325
g
2 6t 13
g
1l 1275
2 — L L 125
0 20 40 0 80 100

CPU uilization (%)

Fig. 11, MySQL throughput (transactions/s) vs. CPU utilization.

320

50 T T
Native ——
Docker net=host volume ——
| DocterNAT volune — F i
[Docker NAT AUFS —— &
KVM geow x
% loss NativeDocker ——) 4
g 6F %loss Native KVM 4
& e
= <
2 _._/"“
& uf
npe” 7
0 _./f'""“—'ﬁ—v—h—- et

56

{192

4128

0 50 100 150 200

Number of sysbench threads
Fig. 12. MySQL latency (in ms) vs. concurrency.

250

%o loss Mative (%a)

mn Examples of performance

140 T T , , , 14

120 ¢ .[1i

100

Native — |
Docker net=host volume ——
Docker NAT volume ——
Docker NAT AUFS —— -
KVM qeow
% loss trans/s NativeDocker —e—
% loss trans/s Native KVM .

P

&
1 1 =1 - m— 4 .-

R
- *]
@ — 2 1wk
A %
o] —F— E
o 80] 3
et 2
= g 8t
o, c
E" 60 - £
c =]
S] 20T
Native ——
20 Docker NAT — | it
Docker net=host ——
KVM ——
O 1 1 1 1 1 1
0 20 40 60 80 100 120 0

Number of client threads

50

72

60

48

36

24

100 150 200 250 300

Number of syshench threads

Fig. 8. Evaluation of NoSQL Redis performance (requests/s) on multiple ~ Fig. 10. MySQL throughput (transactions/s) vs. concurrency.

deployment scenarios. Each data point is the arithmetic mean obtained from
10 runs.

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio:

An updated performance comparison of virtual machines and Linux containers. ISPASS 2015: 171-172

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095802

DST 2018

16

%% loss Native (%0)

Tools, frameworks and providers: Chef, Vagrant,
Amazon, Google, Microsoft, OpenStack, ...

DST 2018 17

mnnteractions in VMs/containers
provisioning and management

Google Container Registry Runtime]

AWS EC2 Container Registry Management
Azure Container Registry

. code

Registry @ control
AN
N—

VM/container

images ‘) Virtual machine/
container instances
- - r 3
conflguratlon Operating System
artifacts

\
>

y,
|

Physical resources

\, J

You focus on application development, how does it impact
your work?

DST 2018 18

mn Examples

Client } DOCKER_HOST] Registry
docker build .-{---4:+ Docker daemon | @
4 f ~ L = o
- .\ ‘r", =~
docker pull -| | " . 4

a0
™

/ Containers |— \.\ @}—

\ ‘ NGIMX
e ~ " — .||'
~] 7 /

docker run —}

ooy
0;; |

Source: https://docs.docker.com/engine/understanding-docker/

DST 2018 19

Examples

IBM Cloud OpenStack Services runs on OpenStack Icehouse
to provide you with an environment built on the most current

open standards.

Other OpenStack components included:
= Heat — for patternorchastration

» Ceilometer — for reporting, metering
Praddes /

Ul for

Pravides
/ Uldar

Provides netwark
cannacivityfor

_» Compute _______—

medes

Ullar Ul for
Pra\ndus \‘

I

Provdes

N.T for

Dashboard

Tirns
OpenStack experimental projects
are not enabled by default:
Horizon s Trove
* Sahara
Provides Provdes

g m

—— Siaediskfies —» | Object

uty for

- Swre -
imagesin m in m e
|
Prandes

s

Provides
I 1
Block ok
storage
Pravides
.
'Opocnal

Provides
Auth for

Identity

|

Pravides
Auh for

openstack IC”ENH‘OU’S E

£2014 B Coporation

Source: http://www.slideshare.net/OpenStack_Online/ibm-cloud-open-stack-services

DST 2018

20

mn Virtual data centers

* On-demand virtual data centers
= Compute nodes, storage, communication, etc.
» Virtual data centers work like a single distributed
system (e.g., a cluster)
= Challenges
= Provision resources/nodes (using VMs or containers)
= Configure networks within virtual data centers

= Configure networks between virtual data centers and
the outside systems

= Deploy software into the virtual data centers

DST 2018 21 21

mn Example - Weave Net and docker

= \Work with Kubernetes & Mesos as well

= Key idea: using network plug-in for containers
+ P2P overlay of routers in the host

Access to service provided by containers Internal systems exposed to containers
°)
Weave Network ‘ ‘
LoJL. e | e oJ o
S N ~ N _ - A H
Data Centre 1 Data Centre 2 Data Centre 3
Contai Containers Containers

Source: https://www.weave.works/docs/net/latest/introducing-weave/

DST 2018 22 22

mn Kubernetes

= Support Docker, rkt, runc, etc.

Kubernetes Master

D Cloud connector

kube-controller-
manager

Cloud

kube-apiserver

I

kube-scheduler

L

Source: https://kubernetes.io/docs/concepts/architecture/cloud-controller/

DST 2018 23

V1 . 1 1 Legend

m n Mesosphere DC/OS

Enterprisz] [Dep&r'der'cy]

GUl cLI Mesocsphere Docker 0S8
Universe Registry Component Component

]

Example --

AgentNodes
] 3 [)
Admin Router), 1 Admin Router Agent
D C/ O S . T T Tt TTmTmTmmTm s k- " " PSSttt
| Cluster Managemant 1 1 IAM & Security 1 | User Tasks
1 1
| e N g !
1 Mesos Exhibiter & DC/OS ! DCIOS Auth | !
1 Master ZooKeeper Backup 1! (0SS-0nly) 1
1 1 o ! 1
L e e e D - - - Jpem— I S
TS i e i 1 1 TToo oo Tt oT ==
Package 11 . . DC/OS [AM 1 Cluster 1 Container
1 Management Iy Container Crchestration I | 1 Management | 1 Runtime
\. J
! H : : ! : ! : [Universal
! Cosmos 11 Marathon Metonome | | C{x:gg:ach 1 ! N‘;;E:? 1 | Container
! I I I I Runtime
| I 1 1 - J
______ I Y 1 L R
___________________ | DC/OS oo oo 1
! 11 Certificate | 1 I " Docker
: Logging & Metrics 1 Autherity 1 : Storage ! I Engine
| S—
| I
1 5 = UL R : 1 W r R
etwor 11
1 DC/OS DC/Os DC/Os 1 1
| History Signal Mefrics “ e 1 | REX-Ray 1 | Docker GG
Aggregator I 1
I 1. J I P \ J
e R el] -——--=-==1" -
Sourae e {a=e}
" H i 1
https://docs.mesosphere.com/1.11/overview j Networking - - _- !
1 1
/architecture/components/ . !
| === : AllNodes
1 D - .----------—-—-—--—-—-———— - 1—-—-=--=-- 1
______ . . Package
Logging & Metrics Management

DST 2018

i

I ! !

I H !

I DC/0S DCI/OS DC/OS > Pkgpand ;
1 panda

| Log L Diagnostics Metrics : | AP :

! 1

24

mn Storage Virtualization

host1 hast2

= |Low-level storage @ U
\d

= e.g. RAID (redundant array = W W
of independent disks) AL Sl
= High-level, e.g., database @%g g

» MySQL Cluster + auto-
sharding

= Why is it relevant to you?

= What changes should we
make In our apps?

Source:
https://www.vmware.com/pdf/vi_architecture_wp.pdf

DST 2018 25

mn Network Function Virtualization

= Consolidate network
equipment and
services

= On-demand
provisioning of
network functions

i i Independent
Classical Network Appliance Wi
App roa c h Virtual Virtual Virtual Virtual

fprflun(.e App u‘n‘(e Ap{)IuTnAu‘ Afpn:m

Appliance | pppliance | Appliance

Orchestrated,
automatic &
remote install.

CDN SessionBorder WAN

DicwaKe C ller Acceleration
Router mm ontroller _
J @
DPI Firewall ~ Carrier Te'ster/QoE - '
Grade NAT - Standard High Volume Servers

Standard Hig! Volume Storage

o @

Is it the sysadmin task? |
never see the network
part in my apps. So why
IS It relevant to the
software developer?

BGSN/GGSN PE Router ~ BRAS RodinAecacs

Network Nodes

Fragmented non-commodity hardware.

B s :) Standar |ghVqun'1e
Physical install per appliance per site.

: Ethernet Switches
Hardware development large barrier to entry for new : o
vendors, constraining innovation & competition. Network Virtualisation
Approach

Figure source: https://portal.etsi.org/NFV/NFV_White Paper.pdf

DST 2018

26

Why Is resource virtualization
Interesting for distributed
applications?

What are impacts of virtualization on
the development and operation of
distributed applications?

DST 2018 27

mn List of why and impact

= Server consolidation
= Consolidating compute capabilities

= Security, fault tolerance and performance
= Through dynamic provisioning and auto-scaling
= Cost/optimization
= elasticity, hot deployment, etc.
= Compatibility issues
= DevOps

» (Closing the gap between real and development
environments

DST 2018 28

mn Server Consolidation

4)

Application \ \‘

Web Container e w r
\) Database Server JMS Server
Operating System (_ 9 7 : \
\) Operating System Operating System
Physical Machine . s _ _
Physical Machine Physical Machine

= Cost, complexity (management)
= |nfrastructures (cooling, spaces), human resources

= Resources under utilization

DST 2018 29

mn Server Consolidation

(N\

Application \
\ Y, \‘
Web Container JMS Server

L Database Server } }
L Operating System] [Operating System] [Operating System]
Virtual Machine

Virtual Machine Virtual Machine

[Physical Machine J

How does it help me? Consolidation looks good for the
sysadmin but not relevant to the software developer?

What changes the developer has to do?

DST 2018 30

mn Microservices + partitioning

business concepts

[Modeled amund] [Culture of |

automation

" T

Highly
Small alnonomus

Hlde internal
Implementatlon
details

Isolate
failure Deploy
indepe ndenuy

Decentrallze all
the lhmgs

N (\

[Service 1 Service 2

< \, <
N\ ()

>
Container 1 Container 2

Physical Machine I

= Partition complex code into different services -
easy configuration and maintenance

= But this has to be in sync with underlying
resources provisioning (e.g., containers)

DST 2018

31

Questions from practices

How big Is a microservice?

DST 2018 32

mn How big Is a microservice?

eShopOnContainers reference application
(Development environment architecture)

Service Bus

—t—* m = i Redis cache /‘
o

|

TypeScript/Angular 2

422 MongoDB /
n‘ E. » CosmosDB

o o o o

Client a s ftDocKkerHOSt 000 . T T e e e e e ==
PP [| Dncke:r ki [Identity microservice (STS+users) |
eShop mobile app I siiia fe : - SOl Server I
Xamarin.Forms l m - database : 52
C# I t‘:___:I I
xPlat. OS: I { Catalog microservice | \ |
105 = erver = P ——
Android l | _}_,_ m___ - “".- '%._._.f T —
%) database | o I
Windows | | e e ; S | RabbitQ
i i P S P =
| I :- Ordering microservice ! :1:1_ I I |
I : Ordering .II\\‘ - qul .E": - : =4 o g I
i ._ /,r database | a1 I
{ A l T W r—
GracePerind worker swe Fi T = E I
= = Ao w
Basket microservice =R rermy
3 gus |
o

Figure source: https://blogs.msdn.microsoft.com/dotnet/2017/08/02/microservices-and-docker-containers-
architecture-patterns-and-development-guidance/

DST 2018 33

How many containers are needed for a microservice?

DST 2018 34

mn Look at some patterns

» Single cointainer in single node
= Multi-containers in single node
= Multi-containers in multiple nodes

sources:

https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-
patterns

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16
burns.pdf

DST 2018 35

mn Security improvement

(Virtual) server
and service
Isolation

DST 2018

7

h'd

Service instance 1 [Service instance 2
(user A)

(user B)

Operating System

AL

Physical Machine

o I
Virtual C Virtual Machine N

Machine p
service 1 Service 2

= :
Operating Operating System

. System)

r\ ~ W >

Physical Machine

36

mn Fault tolerance and performance

How does resource virtualization help improving fault
tolerance and performance?

» Possible benefits
= Failure masking
= Cost/optimization
= Elasticity, hot deployment, etc.

* Cloud bursting (combining private + public
resources)

= Improving service performance in incident
management

= E.g., spend time to fix a machine or just quickly relaunch a

new one (and fix the old one later) ?
DST 2018 37

mn Development and deployment

Compatibility and support legacy application

Maintenance

Close the gap between development/test
environment and real/production environments

Simplify testing, emulating real environments,
etc.

DST 2018 38

IS Service Discovery in the container
age

Example of a simple service Multiple instances in VMs/containers
1 lrar express = require('express'); U carvice":
2 var app = express(); 0 T { '
3 O app.get('/', function(request, response) { ["name": "DSTProvider"
4 response.send('Hello World! I am DST 2018'); 0 "tags": ["nodeis"] ’
5 - 1) "address”: "35.198.161.XXX",
6 var port = process.env.PORT || 3000; "port": 3000
7 B app.listen(port, function() { i } I
8 console.log{"Listening on " + port); L
8 - 1)

Why do we need the service discovery? How do
you do the service discovery?

DST 2018 39

mn Distributed Coordination

TABLE 4. PATTERNS OF PAXOS USE IN PROJECTS

= Alot of
algorithms,
etc.

= Paxos family

= Well-known In
the cloud

= Zookeeper

Notes from the paper: “server replication
(SR), log replication (LR), synchronization
service (SS), barrier orchestration (BO),
service discovery (SD), group membership
(GM), leader election (LE), metadata
management (MM) and distributed queues

Q)

Usage Patterns

Project Consensus System | SR | LR | 8§ | BO | 5D | GM | LE | MM
GFS Chubby v v v
Borg Chubby/Paxos v v v

Kubernetes eted v v
Megastore Paxos v
Spanner Paxos v
Bigtable Chubby v v v
Hadoop/HDFS ZooKeeper v v

HBase ZooKeeper v v v v

Hive ZooKeeper v v
Configerator Zeus v
Cassandra ZooKeeper v v v
Accumulo ZooKeeper v v v
BookKeeper ZooKeeper v v
Hedwig ZooKeeper v v
Kafka ZooKeeper v v v
Solr ZooKeeper v v
Giraph ZooKeeper v v v
Hama ZooKeeper v
Mesos ZooKeeper v
CoreOS eted v
OpenStack ZooKeeper v
Neodj ZooKeeper v v

Ailidani Ailijiang, Aleksey Charapkoy and Murat Demirbasz
, Consensus in the Cloud: Paxos Systems Demystified, http://www.cse.buffalo.edu/tech-reports/2016-02.pdf

DST 2018

39

mn ZooKeeper Service

Source: https://zookeeper.apache.org/doc/r3.4.10/zookeeperOver.html

DST 2018 39

mn ZooKeeper data -- znodes

= Data nodes called znodes

* Missing data in a znode -2
Problems with the entity that ti
znode represents

= Persistent znode
= /path deleted only through

fapp2

delete Ca” fapp1/p 1 flappl/ip 2 /fapp1/p_3
= Ephemeral znode, deleted when Source:
_ _ https://zookeeper.apache.org/doc/r3.4.
= The client created it crashed 10/zookeeperOver il

= Session expired

DST 2018 39

mn Consul

= https://www.co
nsul.io

= Cross data
centers

= End-to-end
service
discovery

DATACENTER

CLIENT

RPC
TCR/B300

SERVER

LAN EDSSIP L#N EUSSIF
...... CLIENT e CLIENT
TEP!UDPJ-BBI]‘I TC F'IUDPJEEIZI'I

OS RPC
"i:o “She TEP,rEEl uli]

/g‘% "

LEADER
FORWARDING
—

REPLICATION REPLICATION

SERVER SERVER

— —_—
TCR/8300 (LEADER) TCRfB300 [FOLLOWER)

-
-
-
-

SERVER

LEADER
FORWARDING
—

REPLICATION

REPLICATION

SERVER SERVER

TCP/8300 [LEADER) TCP/B30D (FOLLOWER)

Figure source: https://www.consul.io/docs/internals/architecture.htmi

DST 2018

43

mn ETCD

= Distributed key-value store

json /config
{i } /database el @
/feature-flags Jconfig
/verbose-logging ® apy
http /redesign
Simple Interface Key/Value Storage Watch for Changes
Read and write values with curl and other HTTP Store data in directories, similar to a file system Watch a key or directory for changes and reactto the
libraries newvalues
& Optional SSL client cert |shl Benchmarked at 1000s of @ Optional TTLs for keys 3¢ Properly distributed via Raft
authentication writes/s per instance expiration protocol

Technical Overview

etcd is written in Go which has excellent cross-platform support, small binaries
and a great community behind it. Communication between etcd machinesis
handled via the Raft consensus algorithm.

leader

Latency from the etcd leader is the most important metric to track and the built-in PRI TR R
A T RN

dashboard has a view dedicated to this. In our testing, severe latency will 8 11 Tea

X R i W) A follower 4 o > follower

introduce instability within the cluster because Raftis only as fast as the slowest)

machine in the majority. You can mitigate this issue by properly tuning

etcd has been pre-tuned on cloud providers with highly variable networks. ’ \

More Information ¥ M

Presentation: How Raft ¥

Figure source: https://coreos.com/etcd

DST 2018 44

mn Some comparison

From etcd view

ETCD

Concurrency Primitives Lock RPCs, Election RPCs, command line locks,
command line elections, recipesin go

Linearizable Reads Yes

Multi-version Yes
Concurrency Control

Transactions Field compares, Read, Write

Change Motification Historical and current key intervals

User permissions Role based
HTTR/JSON API Yes
Membership Yes

Reconfiguration

Maximum reliable
database size

Minimum read Network RTT

linearization latency

Several gigabytes

ZOOKEEPER

External curator recipes in Java

No
No

Version checks, Write

Current keys and directories

ACLs

No
>3.5.0

Hundreds of megabytes
(sometimes several gigabytes)

MNo read linearization

Source: https://coreos.com/etcd/docs/latest/learning/why.html

DST 2018

45

CONSUL

Native lock API

Yes

Mo

Field compare, Lock,
Read, Write

Current keys and
prefixes
ACLs

Yes

Yes

Hundreds of MBs

RTT +fsync

ELASTICITY

DDDDDDD

mn Elasticity in physics

“elasticity (or stretchiness) is the physical property of a material that returns to
its original shape after the stress (e.g. external forces) that made it deform
or distort is removed” — http://en.wikipedia.org/wiki/Elasticity (physics)

It is related to the form (the structure) of something
“Stress” causes the elasticity (structure deformation)
“Strain” measures what has been changed (amount of deformation)

In the context of computing: given a process or a system
What can be used to represent “Stress” and “Strain™?
When does a “strain” signals a “dangerous situation™?
How to be elastic under dynamic “stress”?

DST 2018 a7

mn Elasticity in computing

“Elastic computing is the use of computer resources which
vary dynamically to meet a variable workload” —

http://en.wikipedia.org/wiki/Elastic_computing

“Clustering elasticity is the ease of adding or removing
nodes from the distributed data store” —

http://en.wikipedia.org/wiki/Elasticity (data_store)

“What elasticity means to cloud users is that they should
design their applications to scale their resource
requirements up and down whenever possible.”, David

C h U — http://xrds.acm.org/article.cfm?aid=1734162

DST 2018 48

mn Elasticity in (big) data analytics

Quality of
Analyti;cs

Result

Data 4//
Data
Data }--------- Analytics
Data,
Data, —
Analytics
Dataz Analgics ’rocess
Analytics pss 7
Analytics 5S |
Process ;
Activity
Activity (Task)
Activity
Activity
(Task)

DST 2018

49

/ -

More data - more compute
resources (e.g. more VMSs)

More types of data - more
activities - more analytics
processes

Change quality of
analytics

= Change quality of data
= Change response time
= Change cost

= Change types of result
(form of the data output,
e.g. tree, table, story)

mn Diverse types of elasticity requirements

= Application user: “If the cost is greater than 800 Euro, there should be
a scale-in action for keeping costs in acceptable limits”

= Software service provider: “Response time should be less than
amount X varying with the number of users.”

= Cloud infrastructure provider: “When availability is higher than 99%
for a period of time, and the cost is the same as for availability 80%, the
cost should increase with 10%.”

Solving conflicting requirements across layers is
challenging

DST 2018 50

ElGeneral software design concept:
Lifecycle of applications and elasticity

|
| Elasticity ! | Control processes | | Orchestrate concrete !
I specification IN : | 1 operations l
I | \ — e e e e e e e e e e | I |
- \ N~ 7777 mmm———— i
\ \ I
\ \ I
\ \ I Requirement trigger ———>
. > \ . I Process control ——»
F Elasticity Zone f[------ > Elasticity Zone [---------- R > Elasticity Zone I Behavior change §
v L7] 1 Behaviorchange ...
/‘ I
\ h

Cloud-specific

- . - - ‘ B . . - . g
Deployment Elasticity Pr.ed|ct|on R . Elasticity .) Elasticity P_r|m|t|ve » Management Function
process Function Adjustment Function Operations .
, specific APls
Static | ‘___) Runtime View 1 __L __________________ L ________ N Runtime 2
Description (Elasticity Space) (Elasticity Space)
/
Opertation Time // o - o o ’
______ L -
| Monitoring :
: I'information I
— e e [Check: https://doi.org/10.1016/j.procs.2016.08.276

DST 2018 51

Our focus In this course: elasticity of compute
resources for distributed applications

p
| User Interface “

b

| Processing F
pS

f 3
Storage .
\.

Figure source: http://www.cloudcomputingpatterns.org/Distributed_Application

Q1: Where can elasticity play a role in these application models?

Q2: How does virtualization help implementing elasticity of
resources

DST 2018 52

mn Practical elasticity implementation
= Elasticity specification
= Constraints/Rules

= Elasticity monitoring and prediction
= Can you nhame some monitoring techniques?

= Elasticity controller/adjustment:
= Interpret constraints and monitoring data
= Control
= Reactive scale versus proactive scale

= Vertical scaling (scale up/down) versus Horizontal
scaling (scale out/in)

DST 2018 53

mn Elasticity constraints

Table 1 Summary of the reviewed literaiaee aboat threshold -based mles
Ret Auto-scaling Technigques HA S RP Maric Monitoring SLA Welor klorad s Experimental Platform
53] Hules Both R CPLL, memery, 140 Customm toaal, 1 Response time Synthetic. Browsing ancd Custom testhed Coalled IE Clouad)y -+
minue ordering behavior of TP
USRI ITe TS,
|72] RHuoles H R Average waiting Custom ool — Sy ntheri o FPublic doud. Funiee Grid,
time in guene, CPLU Eucalyptus India cluster
(WR=T |
|5h] Rules Both R CPL load, response — — CUnly algorithm is
time, network link described, no expenmentation
load, jitter and delay. is carried oot
[4%] Rules + QT H F Request rate Avmazon O loud - Response time Real, Wikipedia races Real provider, Amazon BC2 +
Watch, 1—5 minuies Hitpert 4+ MediaWiki
|15%2] RightScale + MA Lo H R Mumber of actve v toam ool — Sy nthetic. IDnitferent Custoam testhed, Xen 4+ custom
perfonmance metnc Sessi0ns number of HTTF clients collaborative web application
73] RightScale + TS: LR H /P Reqgquest rate, CFPL Simu lated . — Synthetic, Three rattic Custom sima lator, tuned atier some
and ARl lovend pattern s weekly cacillation, real experiments .
Large spike amcd mncdom
|59 RightScale H R CPL load Amazon ClondWaich — Real, World Cup 95 Real provider, Amazon ECZ 4
RightSciale (PaaS) + a simple web
application
|“5] RightScale 4 H R Mumber of sessions, s o ool < — Real, World Cup 95 Real provider, Amazon EC2 4
Strabe my -tree CPLD adle minues, RightScale (PassS) + a simple web
application,
[%1] Rules & 34 CPL Joad, memory, Himu lab e . — Synthetic Custom simolaor, plus Java mle
ban dwidth , storaze engine Drools
771 Rules W R CPL load Sirmlarad, 1 mimane Respormse time Real, Clark Net Custoam st lator

Table rows are as follow, (1) The reference to the reviewed paper. (2) A short description of the proposed technique. (3) The ty pe of auto-scaling: horizontal (H) or vertical (V). (4)
The ractve (B) ancdlor proactive (P) nature of the proposal . (5) The perfommance metric or metrics driving auto-scaling. (6) The monitoring ool used o gather the metrics . The
remining three felds ane relavs] o the emdironment in which the technigque is resved, (7)) The metric wsed wo verify SLA compliance, (8) The workload applisd o the applicaton
managed by the auto-scaler. (99 The platorm on which the technigue is rested

Source: A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments, Tania Lorido-Botran , Jose
Miguel-Alonso, Jose A. Lozano, http://link.springer.com/article/10.1007%2Fs10723-014-9314-7

DST 2018 54

mn Microsoft Azure Elasticity Rules

Source: https://msdn.microsoft.com/en-
us/library/hh680881%28v=pandp.50%2
9.aspx

DST 2018

XML |
<rules
xmlns=http://schemas.microsoft.com/practices/2011/entlib/autoscaling/rules
enabled="true">
<constraintRules>
<rule name="Default" ription="Always active"
enabled="true" ninx
<actions>
<range min="2" max="3" target="RoleA"/>
</actions>
</rule>
<rule name="Peak" description="Active at peak times"
enabled="true" rank="100">
<actions>
<range min="4" max="6" target="RoleA"/>
</actions>
<timetable startTime="08:00:00" duration="02:00:00">
<daily/>
</timetable>
</rule>
</constraintRules>
<reactiveRules>
<rule name="Scalelp" description="Increases instance count"
enabled="true" rank="10">
<when>
<greater operand="Awvg_CPU RoleA" than="80"/>
</when>
<actions>
<scale target="RoleA" by="1"/>
</actions>
</rule>
<rule name="ScaleDown" description="Decreases instance count"”
enabled="true" rank="10">
<when>
<less operand="Avg_CPU_RoleA" than="20"/>
</when>
<actions>
<gcale target="RoleA" by="-1"/>
</actions>
</rule>
</reactiveRules>
<operands>
<pe manceCounter alias="Avg_CPU RoleA"
rmanceCounterlame="%Processor (_Total)\% Processor Time"
aggregate="Average" source="RoleA" timespan="00:45:00"/>
</operands>
</rules>

High level elasticity control in SYBL
(http:/ltuwiendsg.github.io/iICOMOT/

#SYBL.CloudServiceLevel oadBalancertnt i
Consl: CONSTRAINT res pon seTime <5 ms - EventProcessingUnit TiEERATEhGY C‘:SEt rez%znseTirr:e < :0 msl -
Cons2: CONSTRAINT responseTime < 10 ms Brenresngerses e - e
WHEN nbOfUsers > 10000
Strl: STRATEGY CASE fulfilled(Cons1) OR @ CONSTRANT responseTime = 0ms:
fulfilled(Cons2): minimize(cost)

QueueUnit
#SYBL.ServiceUnitLevel ElasticlaT _ _@
Str2: STRATEGY CASE ioCost < 3 Euro : B ovipeppecssnan oy
maximi Ze(dataFreshness) &"STRATEGY CASE avgBuferSize < 50 #:scalein

#SYBL.CodeRegionLevel |
Cons4: CONSTRAINT dataAccuracy>90% DataContrllerLnt gy
A N D C O St<4 Eu rO DataEndTopology g:rnaNodeUnit ﬁﬂ :STRATEGY CASE cpuUsage < 40 %:scalein;

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling Elasticity in Cloud
Applications”, 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 14-16, 2013, Delft, Netherlands

A quick check: if you want to allow the developer to specify elasticity in
his/her source code, e.g., Java, what would be your solution?

DST 2018 56

Play elasticity from the ground?

= Focus on assignment 3

= Use this trivial code:
https://github.com/linhsolar/distributedsystemsexampl
es/tree/master/simple-upload-elasticity

to write a simple yet full feature of elasticity
uploading example

DST 2018 57

VIRTUALIZATION AND
ELASTICITY FOR
IMPLEMENTING
PERFORMANCE PATTERNS

DDDDDDD

mn Design for handling failures

= Resource failures
= Problems with CPUs, networks, machines, etc.
= - other dependent services failures

= Scopes: with an enterprise, within a data center,
across multiple sites, across multiple infrastructures
provided by different providers, etc.

= Qur design must be ready to handle such failures

= Using virtualization and elasticity techniques to deal
with issues

* Relying on best practices

DST 2018 59

IS Examples of best practices when
using Amazon services

Source: https://media.amazonwebservices.com/AWS_Cloud_Best Practices.pdf

= Using Elastic IPs

= Utilize resources from multiple zones

= Maintain Amazon virtual machines

= Use Amazon Cloudwatch for monitoring
= Automatically make snapshots of VMs

= Automatically backups

DST 2018 60

mn Recall this case

100000 requests/s

[Client | Q

Client

Change the way to handle client requests outside
the service and within the service

DST 2018 61

mn Which are possible solutions?

Throttling

Queue-based load leveling within the service

Multiple instances and queues

Multiple instances and elastic resources

Circuit breaker to deal with failures

You hame it

DST 2018 62

mn Throttling

Disable too many access and disable unessential
services

1 (API Management] i
) L Service J 1

T

'DEFAULT THEOTTLE CLASSES'

[Client Service]

FRAMEWORE

Code: http://www.django-rest- 'rest framework.throttling.UserRateThrottle”
framework.org/api-
guide/throttling/#how-throttling-is-
determined

'CEFAULT THEOTTLE RATES'

DST 2018

Example

Custom domain
indicates the tenant

QEI—W

® http://surveys.adatum.com
[

Adatum

5 requests per second

http://surveys.fabrikam.com

Fabrikam 10 requests per second

http://surveys.contoso.com =_

150 requests per second

/E{Z\

"Throttled”

-

Multi-tenant “Surveys”
application

Meter the

number of
requests per

second

Web role

~

Source: https://msdn.microsoft.com/en-us/library/dn589798.aspx

DST 2018 64

IS Using tasks and queue-based load
leveling pattern

Service

Tasks

Service

/

Message queue

| Clent | B, Y 0 0 P D N P »
Messages

processed
Requests received at a more
at a variable rate consistent rate

i

Khttps://msdn.microsoft.com/en-us/library/dn589783.aspx

DST 2018 65

ISl Examples of queue-based load
leveling pattern

Web role
instances

Source: https://msdn.microsoft.com/en-us/library/dn589783.aspx

Web role
instances

Concurrent web role
instances send requests

to the Storage
Storage @

service
.\ service

o >

%ﬁ

requests timeout
or fail if the Storage
service is too busy
handling existing requests 66

Concurrent web role
instances post requests
to a message
queue

(&

Storage
service

&

Worker
Message queue role

><ID>ID<ID<P><ID><PWD><]

\:\

Consumer
tasks in a worker role
read messages from the
queue and forward them
on to the Storage service
at a controlled rate

&

Sl Using multiple instances of
services and queues

Application instances - : How do we control 1
generating messages | these instances in :
: an efficient way? Y
|
I

Consumer service
instance pool -
\\ processing messages

N\

Source: https://msdn.microsoft.com/en-us/library/dn568101.aspx

DST 2018 67

IS Load balancing and elastic
resources -- recall

L

o

S 3

™ Scalable Service Dispatch Architecture using SQL Server Service Broker

accounts
partition
eXposing
SErvices

request
router

Im routing
table
accounts
partition
exposing
services
A B.C

request
router

“lll accounts

requests distributed across the ldentical routers

routng | B[l L exposing
table services
[IIER ABcC

Figure source: http://queue.acm.org/detail.cfm?id=1971597
DST 2018 68

IS Load balancing and elastic
resources -- Concepts

= Using loadbalancer for a group of resources

-
-
k k4 ¥
EC2 instance EC2 instance
load balancer public.aubn at) |1 || | cublicoubnet
¥ y
[load balancer]
r
L Y
EC2 instances ECZ instances + 15
subnet subnet
ECZ instances EC2 instances
b A private subnet private subn et
Source:
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-
internal-load-balancers.html \)

» Load balancer can monitor instances and send request to
healthy instances but what if we still need more instances?

= Auto-scaling

DST 2018 69

mn Exam P les Google (from console.cloud.google.com)

Autoscaling

[on 2

Amazon services

Autoscale based on
Configuring autoscaling instance groups

CPU usage -
Create Alarm
You can use CloudWatch alarms to be notified automatically whenever metric data reaches a level you define Target CPU usage o
s e e i target. Learn more
¥' Send a notification to: AddCapacityNofification cance CPU Utilization Percent &0 %,
With these recipients: mymail@ ple com o
Whenever: Average « of CPU Utilization - " Minimum number of instances
Is: >= « 80 Percent
1
For at least: 1 consecutive period(s) of 5 Minutes 1210
Name of alarm: AddCapacityAlarm| W my-testasg Maximum number of instances
10

Cancel m

Cool-down period

60 seconds

They are programming tasks

http://docs.aws.amazon.com/autoscaling/latest/userguide/attach-load-balancer-asg.html

DST 2018 70

http://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html

Examples from
Amazon services

Increase Group Size

Name: addCapacity

Execute policy when: AddCapacityAlarm Edit Remove
breaches the alarm threshold: CPUUtilization == &0 for 300 seconds
for the metric dimensions AutoScalingGroupName = my-asg

Take the action: Add * 30 percent of group ~ when 80 <= CPUUtilization < +infinity
Add step (i)

Add instances in increments of at least instance(s)

Instances need: seconds to warm up after each step Decrease GrDUp SiZE

Create a simple scaling policy (i) Name: D c ity
- ecreaseCapaci

Execute policy when: DecreaseCapacityAlarm Edit Remove
breaches the alarm threshold: CPUUtilization <= 40 for 300 seconds
for the metric dimensions AutoScalingGrouphName = my-asg

Take the action: Remove » 2 instances ~ when 4q == CPUUtilization = -infinity

Add step (i)

Create a simple scaling policy (i)

aws autoscaling attach-load-balancers --auto-scaling-group-name my-asg --load-balancer-names my-1lb

http://docs.aws.amazon.com/autoscaling/latest/userguide/attach-load-balancer-asg.html
DST 2018 71

http://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html

mn Circuit breaker pattern

100000 requests/s f. Service
It

[Client }

= What if service operations fail due to unexpected
problems or cascade failures (e.g. busy - timeout)

= Let the client retry and serve their requests may not
be good

—> Circuilt breaker pattern prevents clients to retry an
operation that would likely fail anyway and to detect when

the operation failure is resolved.

DST 2018 72

mn Circult breaker patterm

. ircuit) ' A
client b?e:ker supplier Closed
i entry / reset failure counter
do / if operation succeeds
¢ — — — ‘ return result
else
| connection | |ncremen_t failure counter
return failure
| | problem |
I | ! exit /
| | J
. |
| I Success count Failure threshold
JAN 5 A threshold reached reached
? - —ﬂ T timeout! |
imeout!
1 I I
> |
_>|__|_| é Half-Open) é Open A
A - — A entry / reset success counter Tlmee)?;i:::jmer entry / start timeout timer
- — - timeout! | <
T timeout! i | do / if operation succeeds do / return failure
I :I o | increment success counter
I] I return result Operation failed exit /
| | else P
| return failure
—_— = | exit /
< | J . J
1

circuit open! |
' L]

_ o https://msdn.microsoft.com/en-us/library/dn58978:¢
http://martinfowler.com/bliki/CircuitBreaker.html

DST 2018 73

mn Open Case Study for recap

» Multiple topics

« Amount of data per topic varies - ~
Should not have duplicate data Ingest
[T FeEEs in database Client
loT device _
loT device \
Message
Queue ’ NoSQL
il deV'Ce (MQTT/AMQP) database
loT deV|ce Ingest /Storage
loT device Client
Ingest
« Should | use docker? VMs? Client
* Where elasticity can be applied? {

» Topic/data distribution to ingest clients?

DST 2018 74

mn Summary

= Modern distributed applications should consider
underlying computing resources

* Incorporate features to leverage virtualization and
elasticity at runtime through programming tasks
= Elasticity and virtualization enable robust,
efficient and reliable distributed applications

= They can also simplify the development and
operation activities.

= Do exercises by examining examples in this
lecture - e.qg., providing your dockers for next
year students

DST 2018 75

mn Further materials

. https://www.computer.org/web/the-clear-
cloud/content?g=7477973&type=blogpost&urlTitle=performance-patterns-in-microservices-
based-integrations

" Daniel Cukier. 2013. DevOps patterns to scale web applications using cloud services. In
Proceedings of the 2013 companion publication for conference on Systems, programming, &
applications: software for humanity (SPLASH '13). ACM, New York, NY, USA, 143-152.
DOl=http://dx.doi.org/10.1145/2508075.2508432

. https://msdn.microsoft.com/en-us/library/dn600224.aspx

. https://medium.com/google-cloud/kubernetes-101-pods-nodes-containers-and-clusters-
c1509e409e16

DST 2018 76

Thanks for
your attention

Hong-Linh Truong
Faculty of Informatics, TU Wien
hong-linh.truong@tuwien.ac.at

@linhsolar

DST 2018 77

http://dsg.tuwien.ac.at/staff/truong

