
Virtualization, Elasticity and Performance

for Distributed Applications

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
www.infosys.tuwien.ac.at/staff/truong

@linhsolar

DST Summer 2018

DST 2018 1

What this lecture is about?

 Resources and their impact on distributed

systems and applications

 Virtualization

 Resource virtualization

 Elasticity

 Key concepts and techniques

 Performance

 Utilizing virtualization and elasticity for some

performance patterns

DST 2018 2

Impact of resources on Distributed

applications

 Some questions for DevOps

 How to have a development environment that is similar to the

operational/production one?

 How to utilize computing resources in the best way?

 How to achieve the best performance?

DST 2018 3

Figure sources: http://www.cloudcomputingpatterns.org/Distributed_Application

Types of distributed applications

Workflow/process style
Data-centric pipeline style

Recall – Breakdown the complexity

DST 2018 4

Figure source:Sam Newman, Building Microservices, 2015

How to make sure that the underlying resources and

infrastructures are suitable for „small autonomous services”?

Concepts of today‘s lecture

DST 2018 5

Virtualization

Elasticity

Performance

VIRTUALIZATION

DST 2018 6

What is virtualization? A bird view

 Virtualization:

 To abstract low-level compute, data and network resources to

create virtual version of these resources

 Virtualization software creates and manages “virtual

resources” isolated from physical resources

 Virtualization is a powerful concept: we can apply

virtualization techniques virtually for everything!

Virtualization is a key enabling technology for cloud

computing and modern computer networks.

DST 2018 7

Virtualizing physical resources

DST 2018 8

Web Services

(e.g. REST)

Service Container

(e.g. Tomcat)

Operating System

(e.g. Ubuntu)

Physical resources

(e.g. 4 dual-core

CPUs +8GB RAM)

Virtualization layer/resources

(e.g.,1 dual-core CPU, 2 GB RAM)

Web Services

(e.g. REST)

Service Container

(e.g. Tomcat)

Operating System

(e.g. Windows)

Operating System

(e.g. Ubuntu)

Physical resources

(e.g. 4-core CPU +8GB RAM)So if we just develop

„Web services“, why is it

important to us?

Main types of virtualization of

infrastructures for distributed apps
 Compute resource virtualization

 Compute resources: CPU, memory, I/O, etc.

 To provide virtual resources for „virtual machines“

 Storage virtualization

 Resources: storage devices, harddisk, etc.

 To optimize the usage and management of data

storage

 Network Function Virtualization

 Network resources: network equipment & functions

 To consolidate network equipment and dynamically

provision and manage network functions

DST 2018 9

Compute Resource Virtualization

Technologies

 Physical compute resources:

 Individual physical hosts/servers (CPU, memory, I/O)

 Clusters and data centers

 At the low-level: two main streams

 Hypervisor/Virtual Machine monitor

 Virtual machines (VirtualBox, VMWare, Zen, etc.)

 Containterlization

 Containers (Linux Containers, Docker, Warden Container,

OpenVZ, OCI based containers, etc.)

DST 2018 10

Virtual machine

Hypervisor/Virtual Machine Monitor

DST 2018 11

App

Guest OS

Host OS

Physical resources

Virtual Machine

Monitor/Hypervisor

(Level 2)

App App

https://www.citrix.de/products/xenserver/tech-info.html

Another model (Hypervisor level 1)

12

Containers

DST 2018

https://www.docker.com/what-docker

Source: Rajdeep Dua, A. Reddy Raja, Dharmesh Kakadia:

Virtualization vs Containerization to Support PaaS. IC2E 2014: 610-614

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6903537

DST 2018 13

We do not dig into low-level techniques in

virtualization, but examine

 How would virtualization techniques enable us

to acquire, utilize and manage resources for

our Devs and Ops of distributed applications

and systems?

 How would such techniques change our

software design?

 How to align on-demand

resources/infrastructures with software using

them

Virtual machines versus containers

DST 2018 14

Source: Rajdeep Dua, A. Reddy Raja,

Dharmesh Kakadia:

Virtualization vs Containerization to Support

PaaS. IC2E 2014: 610-614

http://ieeexplore.ieee.org/xpl/articleDetails.jsp

?arnumber=6903537

App

Guest OS

App

Container

VM versus containers

DST 2018 15

Source: Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan

Rubio:

An updated performance comparison of virtual machines and Linux

containers. ISPASS 2015: 171-172

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095802

Examples of performance

DST 2018 16

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio:

An updated performance comparison of virtual machines and Linux containers. ISPASS 2015: 171-172

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095802

DST 2018 17

Tools, frameworks and providers: Chef, Vagrant,

Amazon, Google, Microsoft, OpenStack, …

Interactions in VMs/containers

provisioning and management

You focus on application development, how does it impact

your work?

DST 2018 18

VM/container

images

configuration

artifacts

deploy

Operating System

Physical resources

Virtual machine/

container instances

control

Runtime

Management

backup

/store

Registry
build

code

Google Container Registry

AWS EC2 Container Registry

Azure Container Registry

Examples

DST 2018 19

Source: https://docs.docker.com/engine/understanding-docker/

Examples

DST 2018 20

Source: http://www.slideshare.net/OpenStack_Online/ibm-cloud-open-stack-services

Virtual data centers

 On-demand virtual data centers

 Compute nodes, storage, communication, etc.

 Virtual data centers work like a single distributed

system (e.g., a cluster)

 Challenges

 Provision resources/nodes (using VMs or containers)

 Configure networks within virtual data centers

 Configure networks between virtual data centers and

the outside systems

 Deploy software into the virtual data centers

21DST 2018 21

Example - Weave Net and docker

 Work with Kubernetes & Mesos as well

 Key idea: using network plug-in for containers

+ P2P overlay of routers in the host

Source: https://www.weave.works/docs/net/latest/introducing-weave/

22DST 2018 22

Kubernetes

 Support Docker, rkt, runc, etc.

DST 2018 23

Source: https://kubernetes.io/docs/concepts/architecture/cloud-controller/

Example --

DC/OS

DST 2018 24 24

Source:

https://docs.mesosphere.com/1.11/overview

/architecture/components/

Storage Virtualization

 Low-level storage

 e.g., RAID (redundant array

of independent disks)

 High-level, e.g., database

 MySQL Cluster + auto-

sharding

DST 2018 25

Source:

https://www.vmware.com/pdf/vi_architecture_wp.pdf

 Why is it relevant to you?

 What changes should we

make in our apps?

Network Function Virtualization

Is it the sysadmin task? I

never see the network

part in my apps. So why

is it relevant to the

software developer?

DST 2018 26

Figure source: https://portal.etsi.org/NFV/NFV_White_Paper.pdf

 Consolidate network

equipment and

services

 On-demand

provisioning of

network functions

DST 2018 27

Why is resource virtualization

interesting for distributed

applications?

What are impacts of virtualization on

the development and operation of

distributed applications?

List of why and impact

 Server consolidation

 Consolidating compute capabilities

 Security, fault tolerance and performance

 Through dynamic provisioning and auto-scaling

 Cost/optimization

 elasticity, hot deployment, etc.

 Compatibility issues

 DevOps

 Closing the gap between real and development

environments

DST 2018 28

Server Consolidation

 Cost, complexity (management)

 Infrastructures (cooling, spaces), human resources

 Resources under utilization

DST 2018 29

Database Server

Operating System

Physical Machine

JMS Server

Operating System

Physical Machine

Web Container

Operating System

Physical Machine

Application

Virtual Machine

Server Consolidation

How does it help me? Consolidation looks good for the

sysadmin but not relevant to the software developer?

What changes the developer has to do?

DST 2018 30

Database Server

Operating System

Virtual Machine

JMS Server

Operating System

Virtual Machine

Web Container

Operating System

Application

Physical Machine

Microservices + partitioning

 Partition complex code into different services 

easy configuration and maintenance

 But this has to be in sync with underlying

resources provisioning (e.g., containers)
DST 2018 31

Service 1

Container 1

Service 2

Container 2

Physical Machine

DST 2018 32

Questions from practices

How big is a microservice?

How big is a microservice?

DST 2018 33

Figure source: https://blogs.msdn.microsoft.com/dotnet/2017/08/02/microservices-and-docker-containers-

architecture-patterns-and-development-guidance/

How many containers are needed for a microservice?

DST 2018 34

Look at some patterns

 Single cointainer in single node

 Multi-containers in single node

 Multi-containers in multiple nodes

Sources:

https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-

patterns

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_

burns.pdf

DST 2018 35

Virtual MachineVirtual

Machine

Security improvement

(Virtual) server

and service

isolation

DST 2018 36

service 1

Operating

System

Service 2

Operating System

Physical Machine

Service instance 1

(user A)

Service instance 2

(user B)

Operating System

Physical Machine

Fault tolerance and performance

 Possible benefits

 Failure masking

 Cost/optimization

 Elasticity, hot deployment, etc.

 Cloud bursting (combining private + public

resources)

 Improving service performance in incident

management

 E.g., spend time to fix a machine or just quickly relaunch a

new one (and fix the old one later) ?
DST 2018 37

How does resource virtualization help improving fault

tolerance and performance?

Development and deployment

 Compatibility and support legacy application

 Maintenance

 Close the gap between development/test

environment and real/production environments

 Simplify testing, emulating real environments,

etc.

DST 2018 38

Service Discovery in the container

age

Why do we need the service discovery? How do

you do the service discovery?

DST 2018 39

Example of a simple service Multiple instances in VMs/containers

Distributed Coordination

 A lot of

algorithms,

etc.

 Paxos family

 Well-known in

the cloud

 Zookeeper

Ailidani Ailijiang, Aleksey Charapkoy and Murat Demirbasz

, Consensus in the Cloud: Paxos Systems Demystified, http://www.cse.buffalo.edu/tech-reports/2016-02.pdf

Notes from the paper: “server replication

(SR), log replication (LR), synchronization

service (SS), barrier orchestration (BO),

service discovery (SD), group membership

(GM), leader election (LE), metadata

management (MM) and distributed queues

(Q)”

DST 2018 39

ZooKeeper Service

Source: https://zookeeper.apache.org/doc/r3.4.10/zookeeperOver.html

DST 2018 39

ZooKeeper data -- znodes

 Data nodes called znodes

 Missing data in a znode 

Problems with the entity that the

znode represents

 Persistent znode

 /path deleted only through a

delete call

 Ephemeral znode, deleted when

 The client created it crashed

 Session expired

Source:

https://zookeeper.apache.org/doc/r3.4.

10/zookeeperOver.html

DST 2018 39

Consul

 https://www.co

nsul.io

 Cross data

centers

 End-to-end

service

discovery

DST 2018 43

Figure source: https://www.consul.io/docs/internals/architecture.html

ETCD

 Distributed key-value store

DST 2018 44

Figure source: https://coreos.com/etcd

Some comparison

 From etcd view

DST 2018 45

Source: https://coreos.com/etcd/docs/latest/learning/why.html

ELASTICITY

DST 2018 46

Elasticity in physics

 It is related to the form (the structure) of something

 “Stress” causes the elasticity (structure deformation)

 “Strain” measures what has been changed (amount of deformation)

 In the context of computing: given a process or a system

 What can be used to represent “Stress” and “Strain”?

 When does a “strain” signals a “dangerous situation”?

 How to be elastic under dynamic “stress”?

“elasticity (or stretchiness) is the physical property of a material that returns to

its original shape after the stress (e.g. external forces) that made it deform

or distort is removed” – http://en.wikipedia.org/wiki/Elasticity_(physics)

DST 2018 47

Elasticity in computing

“Elastic computing is the use of computer resources which

vary dynamically to meet a variable workload” –
http://en.wikipedia.org/wiki/Elastic_computing

“What elasticity means to cloud users is that they should

design their applications to scale their resource

requirements up and down whenever possible.“, David

Chiu – http://xrds.acm.org/article.cfm?aid=1734162

“Clustering elasticity is the ease of adding or removing

nodes from the distributed data store” –
http://en.wikipedia.org/wiki/Elasticity_(data_store)

DST 2018 48

Elasticity in (big) data analytics

 More data  more compute

resources (e.g. more VMs)

 More types of data  more

activities  more analytics

processes

 Change quality of

analytics

 Change quality of data

 Change response time

 Change cost

 Change types of result

(form of the data output,

e.g. tree, table, story)

Data

Activity
(Task)

Analytics

Process

Analytics Result

Data

Data

Datax

Datay

Dataz

Activity
(Task)Activity

(Task)
Activity

(Task)

Analytics

ProcessAnalytics

ProcessAnalytics

Process

Quality of

Analytics

DST 2018 49

Diverse types of elasticity requirements

 Application user: “If the cost is greater than 800 Euro, there should be

a scale-in action for keeping costs in acceptable limits”

 Software service provider: “Response time should be less than

amount X varying with the number of users.”

 Cloud infrastructure provider: “When availability is higher than 99%

for a period of time, and the cost is the same as for availability 80%, the

cost should increase with 10%.”

DST 2018 50

Solving conflicting requirements across layers is

challenging

General software design concept:

Lifecycle of applications and elasticity

DST 2018 51

Elasticity

specification

Monitoring

information

Orchestrate concrete

operations

Control processes

Check: https://doi.org/10.1016/j.procs.2016.08.276

DST 2018 52

Our focus in this course: elasticity of compute

resources for distributed applications

Figure source: http://www.cloudcomputingpatterns.org/Distributed_Application

Q1: Where can elasticity play a role in these application models?

Q2: How does virtualization help implementing elasticity of

resources

Practical elasticity implementation

 Elasticity specification

 Constraints/Rules

 Elasticity monitoring and prediction

 Can you name some monitoring techniques?

 Elasticity controller/adjustment:

 Interpret constraints and monitoring data

 Control

 Reactive scale versus proactive scale

 Vertical scaling (scale up/down) versus Horizontal

scaling (scale out/in)

DST 2018 53

Elasticity constraints

DST 2018 54

Source: A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments, Tania Lorido-Botran , Jose

Miguel-Alonso, Jose A. Lozano, http://link.springer.com/article/10.1007%2Fs10723-014-9314-7

Microsoft Azure Elasticity Rules

DST 2018 55

Source: https://msdn.microsoft.com/en-

us/library/hh680881%28v=pandp.50%2

9.aspx

High level elasticity control in SYBL

(http://tuwiendsg.github.io/iCOMOT/

#SYBL.CloudServiceLevel

Cons1: CONSTRAINT responseTime < 5 ms

Cons2: CONSTRAINT responseTime < 10 ms

WHEN nbOfUsers > 10000

Str1: STRATEGY CASE fulfilled(Cons1) OR

fulfilled(Cons2): minimize(cost)

#SYBL.ServiceUnitLevel

Str2: STRATEGY CASE ioCost < 3 Euro :

maximize(dataFreshness)

#SYBL.CodeRegionLevel

Cons4: CONSTRAINT dataAccuracy>90%

AND cost<4 Euro

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling Elasticity in Cloud

Applications", 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 14-16, 2013, Delft, Netherlands

DST 2018 56

A quick check: if you want to allow the developer to specify elasticity in

his/her source code, e.g., Java, what would be your solution?

DST 2018 57

Play elasticity from the ground?

 Focus on assignment 3

 Use this trivial code:
https://github.com/linhsolar/distributedsystemsexampl

es/tree/master/simple-upload-elasticity

to write a simple yet full feature of elasticity

uploading example

VIRTUALIZATION AND

ELASTICITY FOR

IMPLEMENTING

PERFORMANCE PATTERNS

DST 2018 58

Design for handling failures

 Resource failures

 Problems with CPUs, networks, machines, etc.

  other dependent services failures

 Scopes: with an enterprise, within a data center,

across multiple sites, across multiple infrastructures

provided by different providers, etc.

 Our design must be ready to handle such failures

 Using virtualization and elasticity techniques to deal

with issues

 Relying on best practices

DST 2018 59

Examples of best practices when

using Amazon services

 Using Elastic IPs

 Utilize resources from multiple zones

 Maintain Amazon virtual machines

 Use Amazon Cloudwatch for monitoring

 Automatically make snapshots of VMs

 Automatically backups

DST 2018 60

Source: https://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

Recall this case

Change the way to handle client requests outside

the service and within the service

DST 2018 61

Client Service
100000 requests/s

Client

Which are possible solutions?

 Throttling

 Queue-based load leveling within the service

 Multiple instances and queues

 Multiple instances and elastic resources

 Circuit breaker to deal with failures

 You name it

DST 2018 62

Throttling

Disable too many access and disable unessential

services

DST 2018 63

Client Service
API Management

Service

Code: http://www.django-rest-

framework.org/api-

guide/throttling/#how-throttling-is-

determined

Example

DST 2018 64

Source: https://msdn.microsoft.com/en-us/library/dn589798.aspx

Service

Using tasks and queue-based load

leveling pattern

DST 2018 65

https://msdn.microsoft.com/en-us/library/dn589783.aspx

Client

Examples of queue-based load

leveling pattern

DST 2018 66

Source: https://msdn.microsoft.com/en-us/library/dn589783.aspx

Using multiple instances of

services and queues

DST 2018 67

Source: https://msdn.microsoft.com/en-us/library/dn568101.aspx

How do we control

these instances in

an efficient way?

Load balancing and elastic

resources -- recall

DST 2018 68

Figure source: http://queue.acm.org/detail.cfm?id=1971597

Load balancing and elastic

resources -- Concepts

 Using loadbalancer for a group of resources

DST 2018 69

Source:

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-

internal-load-balancers.html

 Load balancer can monitor instances and send request to

healthy instances but what if we still need more instances?

 Auto-scaling

Examples

DST 2018 70

Sources: http://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html

http://docs.aws.amazon.com/autoscaling/latest/userguide/attach-load-balancer-asg.html

They are programming tasks

Amazon services

Google (from console.cloud.google.com)

http://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html

Examples from

Amazon services

DST 2018 71

Sources: http://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html

http://docs.aws.amazon.com/autoscaling/latest/userguide/attach-load-balancer-asg.html

http://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html

Circuit breaker pattern

 What if service operations fail due to unexpected

problems or cascade failures (e.g. busy  timeout)

 Let the client retry and serve their requests may not

be good

 Circuit breaker pattern prevents clients to retry an

operation that would likely fail anyway and to detect when

the operation failure is resolved.

DST 2018 72

Client Service
100000 requests/s

Circuit breaker patterm

DST 2018 73

http://martinfowler.com/bliki/CircuitBreaker.html
https://msdn.microsoft.com/en-us/library/dn589784.aspx

Open Case Study for recap

DST 2018 74

Message

Queue

(MQTT/AMQP)

Ingest

Client

NoSQL

database

/Storage

…

Ingest

Client

Ingest

Client

IoT device

IoT device

IoT device

….

IoT device

IoT device

IoT device

• Should I use docker? VMs?

• Where elasticity can be applied?

• Topic/data distribution to ingest clients?

• Multiple topics

• Amount of data per topic varies

• Should not have duplicate data

in database

Summary

 Modern distributed applications should consider

underlying computing resources

 Incorporate features to leverage virtualization and

elasticity at runtime through programming tasks

 Elasticity and virtualization enable robust,

efficient and reliable distributed applications

 They can also simplify the development and

operation activities.

 Do exercises by examining examples in this

lecture  e.g., providing your dockers for next

year students
DST 2018 75

Further materials

 https://www.computer.org/web/the-clear-

cloud/content?g=7477973&type=blogpost&urlTitle=performance-patterns-in-microservices-

based-integrations

 Daniel Cukier. 2013. DevOps patterns to scale web applications using cloud services. In

Proceedings of the 2013 companion publication for conference on Systems, programming, &

applications: software for humanity (SPLASH '13). ACM, New York, NY, USA, 143-152.

DOI=http://dx.doi.org/10.1145/2508075.2508432

 https://msdn.microsoft.com/en-us/library/dn600224.aspx

 https://medium.com/google-cloud/kubernetes-101-pods-nodes-containers-and-clusters-

c1509e409e16

DST 2018 76

77

Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at

http://www.infosys.tuwien.ac.at/staff/truong

@linhsolar

DST 2018

http://dsg.tuwien.ac.at/staff/truong

