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mn What this lecture is about?

» Large-scale data analytics

= Advanced messaging
» Apache Kafka
= Advanced data analytics with streaming data
processing
= Main common features
= Stream processing examples with Apache Apex
= Advanced data analytics with workflows

= Data pipeline with Beam
= Complex workflows with Airflow
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mn Analytics-as-a-service

= Goals
= Developers, Service Providers & Infrastructure
Providers:

= Understand and manage services systems

= Service Providers:
= Understand customers and optimize business

= Examples
= Analyze monitoring information, logs, user activities, etc.
* Predict usage trends for optimizing business

= Techniques - Big data analytics
= Handle and process big data at rest and in motion
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ISl Key issues in large-scale data
analytics

Collect/produce messages from distributed application
components and large-scale monitoring systems

= Cross systems and cross layers

Need scalable and reliable large-scale messaging broker
systems

Require workflow and stream data processing capabillities

Integrate with various different types of services and data
sources
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mn Example from Lecture 4

» Multiple topics

« Amount of data per topic varies
Should not have duplicate data

[T FeEEs in database

IoT device

loT dewce
Message
Queue
loT dewce (MQTT/AMQP)

loT deV|ce

IoT device

« Should I use docker? VMs?
» Where elasticity can be applied?
» Topic/data distribution to ingest clients?
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mn Implementation atop Google cloud
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Source: https://cloud.google.com/solutions/architecture/streamprocessing
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mn Example: monitoring and security

Security-related information
and metrics from distributed
customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html
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IS Example: Bigdata analytics in SK
Telco

Interface Layer n Batch Provisioning

PXEBoot/chef

Flume

Spark Druid

(ETL) | | (Mart) . H Data Service
Katka Analytics Layer

U] oozie (workflow) Layer

Spark SQL Metatron(BI)

Real-Time Spark MiLib Legacy
Layer

[ Components ]

NoSQL Jupyter(R,Python)

1 Batch Processing Layer

Hadoop EDW Spark Streaming Elastic Kubemetes

OO0 Search
Real Time anaiyeis HW Accelerator
4 (SSD, FPGA)

Analytics Layer n YARN (Unified Resource Manager)

Source: Yousun Jeong https://www.slideshare.net/jerryjung7/stsgl7-speaker-yousunjeong
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mn Cloud services and big data analytics

Operation/Management/
> Business Services
Data sources Messaging systems Stream processing Warehouse
(sensors, files, database, — (e.g., Katka, AMQP,  —— A= : Analytics ]

WSO02, Google Dataflow)

Storage and Database
(S3, Google BigQuery, InfluxDB, HDFS, =+
Cassandra, MongoDB, Elastic Search

Batch data processing
ete.) systems
T' (e.g., Hadoop,lAirfloW, Spark)

\ 4

Elastic Cloud Infrastructures
(VMs, dockers, OpenStack elastic resource management tools, storage)
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Recall: Message-oriented
Middleware (MOM)

» Well-supported in large-scale systems for
Persistent and asynchronous messages

Scalable message handling

» Message communication and transformation
» publish/subscribe, routing, extraction, enrichment
= Several implementations

Amazon SQS

MQTT

JMS
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mn Recall: Workflow of Web services

= You learn it from the Advanced Internet
Computing course

= Typically for composing Web services from
different enterprises/departments for different
tasks = many things have been changed in the
cloud environment

= For big data analytics and Analytics-as-a-
Service

= Tasks are not just from Web services
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, originally from LinkedIn

APACHE KAFKA
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http://kafka.apache.org/

mn Some use cases

= Producers generate a lot of realtime events
* Producers and consumers have different

orocessing speeds
= E.g. activity logging

Message queue

4
4
4
4

4
/’

Which techniques

i can be used
I control this?

]
1
1
to I
1
1
1

o o o o e e e )

[Producer m3 I m2
(100x) I

m1

4{

Consumer
(10x)

]

= Rich and diverse types of events

= E.g.cloud-based logging

= Dealing with cases when consumers might be
on and off (fault tolerance support)
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mn More than message broker

= Messaging features
* For transferring messages
» Other frameworks in the ecosystem: RabbitMQ, Mostquitto
= Streaming processing
= Streaming applications handle data from streams

» Read and write data back to Kafka messaging
brokers

» Other frameworks in the ecosystem: Apache Flink
and Apache Apex

= High-level SQL-style: KSQL
» Other possibilities: SQL-liked + Java in Apache Flink
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Broker

—

Broker

Broker

l Broker

Kafka DeS|gn

Topic
Partition m m3 m2 m1l
Partition s s3 s2 sl
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Use cluster of brokers to
deliver messages

A topic consists of
different partitions

Durable messages,
ordered delivery via
partitions

Online/offline consumers

Using filesystem heavily
for message storage and
caching



mn Messages, Topics and Partitions

* QOrdered, immutable sequence of messages

» Messages are kept in a period of time (regardless of
consumers or not)

= Support total order for messages within a partition
= Partitions are distributed among server

Partition
0

FPartition
1

Partition
2

Old

Anatomy of a Topic

0

1

2

3

4

5

&

7

8

i

90

114

—y

2 I\
_ 0
/Writes

1014
2,
_

= Mew

Source: http://kafka.apache.org/documentation.htmi
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mn consumers

= Consumer pulls the data

= The consumer keeps a single pointer indicating
the position in a partition to keep track the offset

of the next message being consumed
= Why?

—> allow customers to design their speed

—> support/optimize batching data

—> easy to implement total order over message
- easy to implement reliable message/fault tolerance
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mn Example of a Producer

| public SimpleProducer( String url, String inputfile, String topic ) {
Properties props = new Properties();
props.put("bootstrap.servers”, url);

props.put(“client.id", "rdsea.io.training.democ"};

props.put('"key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer"};
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producer = new KafkaProducer<Integer,String=(props);

this.topic = topic;
this.inputfile =inputfile;

- }

Bl public void run() {
int messagelo = 1;
read data from file:
try {

Reader in = new FileReader(inputfile);
Iterable<CSVRecord= records = CSVFormat.RFC4180.withFirstRecordAsHeader() .parse(in);
for (CSVRecord record : records) {

JsonObject event = new JsonObject();
event .addProperty( "USERPHONE", 6645);
event .addProperty("TIME", Long.parselLong(record.get("TIME")));

event .addProperty("lat", Float.parsefFloat(record.get("LATLTUDE")));
event .addProperty("lon", Float.parseFloat(record.get("LONGITUDE")));

event .addProperty("GSM EIT ERROR RATE", Float.parseFloat(record.get("GSM BIT ERROR RATE")));
event .addProperty("GSM_SIGNAL STRENGTH", Float.parseFloat(record.get("GSM_SIGNAL _STRENGTH")));
a simple way to handle missing data is to skip the record

if (!record.get("LOC_! ") .equals("")) {

event .addProperty( LI CUR: , Float.parseFloat(record.get("LOC
1 else {

continue;
3

if (!record.get("LOC_SPEED") .equals("")) {

event.addProperty("'LOC_SPEED", Float.parseFloat(record.get("LOC_SPEED")});
} else {

continue;

CCURACY ") ))

}

String eventString = "{\"event\":
try {

+ event + "}";

producer.send(new ProducerRecord<Integer,String=(topic,messageNo,eventString)).get();
} catch (ExecutionException e) {
TODO Auto-generated catch block
e.printStackTrace();

! |
Curmtam cet mednd T o f 10ant e amn s [0 0 maceaanhla 0 U mndnnd S ed e o LY .
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n Example of a consumer

public class SimpleConsumer {
private final KafkaConsumer=Integer, String= consumer;
private final String topic;
private final int pollNr;
=] public SimpleConsumer(String url, String topic, int pollNr) {

Properties props = new Properties();

JST Uze standard examplLe

props.put (ConsumerConfig.B00TSTRAP SERVERS CONFIG, url);

props.put (ConsumerConfig.GROUP ID CONFIG, "RDSEA Simple Consumer');

props.put (ConsumerConfig.ENABLE AUTO COMMIT CONFIG, "true");

props.put (ConsumerConfig.AUTO COMMIT INTERVAL M5 CONFIG, "l00O");

props.put (ConsumerConfig.SESSION TIMEOUT MS CONFIG, "30000");

props.put (ConsumerConfiq.KEY DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
props.put (ConsumerConfig. VALUE DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.StringDeserializer”);

consumer = new KafkaConsumer=Integer, String=(props);
this.topic = topic;
this.pollNr = pollNr;

- T
=] public void readData() {
consumer.subscribe(Collections.singletonlist(this.topic));
ConsumerRecords<Integer, String= records = consumer.poll(pollhr);
for (ConsumerRecord=Integer, String= record : records) {
System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset());
I
- T
E public static void main(String[] args) {
if (args.lengih < 3) {
System.out.println("Usage: SimpleProducer kafka broker topic nr");
System.exit(0);
I

int pollNr =Integer.valuelf(args[2]);
SimpleConsumer consumer = new SimpleConsumer(args[0], args[l], pollNr);
consumer. readData() ;

- }
}
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mn Message delivery

= Still remember message delivery guarantees?

= At most once
= At least once
= Exactly once
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What does it mean exactly one?

Consumer ]
A
Broker
[ Producer Msg: “hello DST” Consumer ]
(100x) I B
Consumer ]
C

» Producer: Idempotent delivery - no duplicate entry in the log

» Transaction-like semantics: either message to ALL partition topics or not at all
= Consumer behavior management

DST 2018 22



Mﬂ Scalability and Fault Tolerance

= Partitions are distributed
and replicated among
broker servers

= Consumers are
organized
Into groups

= Each message is
delivered
to a consumer instance
In a group

= One partition is assigned
to one consumer

DST 2018

Kafka Cluster

Server 2

P1

Server 1
r PS—‘ /|jé\@1
/'\ =
o S

//

C1

Consumer Group A

\\

C3

C6

Consumer Group B——
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mn Partitions and partition replication

= Why partitions?
= Support scalability

= enable arbitrary data types and sizes for a
topic

= enable parallelism in producing and
consuming data

= But partitions are replicated, why?
= For fault tolerance
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mn Partition Replication

producer

consumer

broker 1 broker 2 broker 3

Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013

The leader handles all read and write requests
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mn Consumer Group

= Consumer Group: a set of consumers
» |s used to support scalability and fault tolerance
= allows multiple consumers to read a topic

= In one group: each partition is consumed by only
consumer instance

= Combine ,queuing” and ,publish/subscribe” model

= Enable different applications receive data from the
same topic.

= different consumers in different groups can retrieve
the same data
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TU .
n Group rebalancing

Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html
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mn Key Questions/Thoughts

= Why do we need partitions per topic?

—> arbitrary data handling, ordering guarantees,
load balancing

= How to deal with high volume of realtime
events for online and offline consumers?

—> partition, cluster, message storage, batch
retrieval, etc.

= Queuing or publish-subscribe model?

- check how Kafka delivers messages to
consumer instances/groups
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Mﬂ Kafka vs

RabbitMQ

<y0B2
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STREAMING DATA
PROCESSING
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mn Batch, Stream and Interactive
Analytics

Batch — Ad-hoc queries on
large data sets. I/O Bound

Data

Interactive — Querying ggg};— ,l [?,j Og‘w,,
historical data \\ APACHE ] mongoDB sriak
| DRILL -
2 Tokyo
\ R PARACHE &g
W HBRSE 4. «

I membase

Real Time

Streaming

Source: https://dzone.com/refcardz/apache-spark
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mn Recall: Centralized versus distributed
processing topology

Two views: streams of events or cloud of events

Complex Event Processing
(centralized processing)

Event cloud
Proces ™\

Sin

node | node] node

Usually only
gueries/patterns are written
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Streaming Data Processing
(distributed processing)

Proce
in Proces
node sina
node
Proces
sin

node

Code processing events and
topologies need to be
written



S Structure of streaming data
processing programs

Topology of operators

External source
Compute
‘_ ______ o Data source @ Yy------ O ef;tor
Operator g -
<
Data source Compute
.— -------- --- Operator Operator

Output/Sink
Operator

Native versus micro-batching
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Data source operator: represents a source of streams
Compute operators: represents processing functions




mn Key concepts

= Structure of the data processing
= Topology: Directed Acycle Graph (DAG) of operators
= Data input/output operators and compute operators

= Accepted various data sources through different
connectors

Scheduling and execution environments
= Distributed tasks on multiple machines
= Each machine can run multiple tasks

= Stream: connects an output port from an operator to an
Input port to another operator

= Stream data is sliced into windows of data for compute
operators
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mn Implementations

* Many implementation, e.qg.
= Apache Storm
= https://storm.apache.org/
= Apache Spark
= https://spark.apache.org/
= Apache Apex
= https://apex.apache.org/

» Apache Kafka and Apache Flink
Check:

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-
processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-
processing-frameworks-part-2
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mn Key common concepts

= Abstraction of streams
= Connector library
= Very important for application domains

* Runtime elasticity

» Add/remove (new) operators (and underlying
computing node)

= [ault tolerance
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mn Abstraction of Data Streams

Data stream is the key abstraction

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can
be data described by a primitive data type or by a
complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements
(tuples)

In Apache Kafka: data element is <Key,Value> tuple




Bl Example of an Apex application in

Java

@ApplicationAnnotation(name="MySecondipplication™)
public class BTSApplication implements StreamingApplication

{

String topic ="apextest";

QoS qos;
public BTSApplication() {
T this.gos = QoS.AT_MOST _ONCE;
}
@dverride

public void populateDAG(DAG dag, Configuration conf)
21

MgttClientConfig btsmgttConfig = new MgttClientConfig();

btsmgttConfig.setHost("localhost");
btsmgttConfig.setPort(1883);

btsmgttConfig.setUserName( "guest");
btsmgttConfig.setPassword( "guest") ;
btsmgttConfig.setCleanSession(true);

[ eating input operato

btsInput.setMgttClientConfig(btsmqttConfig) ;
System.out.println(“sSubscribe topics");
btsInput.addSubscribeTopic(topic, qos);

|: =L d SlMple exalpLe OUTPUT 2 ddild = .

[
s

cons.setSilent(false) ;
System.out.println("Just create one single stream");
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System.out.println{"Start the application by connecting to MQT.

* @author truong

public class VietcontrolMQTTInput extends AbstractMgttlnputOperator{
public final transient DefaultOutputPort=String= out;

¥

1

’

public VietcontrolMQTTInput() {

¥

this.out = new DefaultOutputPort<=();

@0verride
public void emitTuple(org.fusesource.mgtt.client.Message msg) {

38

System.out.println{"topic: "+msg.getTopic());

byte[] data =msg.getPayload();

String v = new String(data, Charset.forName("UTF-28") };
System.out.println{v);

out.emit(v);

VietcontrélMQTTInput btsInput = dag.addOperator({"input"”, VietcontrolMQTTInput.class);

CohsoleOutputOperator cons = dag.addOperator('console”, new ConsolelutputOperator()});

dag.addStream( "test", btsInput.out, cons.input).setlocality(locality.CONTAINER LOCAL);



mn Processor/Operators

= Streaming applications are built with a set of
processors/operators: for data and computation

Malhar Operators

Input/Output Operators

Compute Operators
o

Source: https://apex.apache.org/docs/malhar/
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= Some common
data operators
(related to other
lectures)
= MQTT
= AMQP
= Kafka



Why are the richness and diversity of
connectors important?
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Time and stream processing

Can you explain the time notion and the
roles?
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mn Fault tolerance

= Recovery
= Atleast once
= At most once
= Exactly once
» E.g. Kafka Streams: Exactly once and at least once

= Note the difference between messaging and
processing w.r.t fault tolerance
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mn DAG of Operators

Ports @ Output Ports @
Upstream operators Downstream operators
Operators having directed path Operators having directed path
to opr from opr

Source: https://apex.apache.org/docs/apex-3.6/operator_development/

= Ports: for input and output data
= Data in a stream: streaming windows
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mn Processing data in operators

Different types of Windows: GlobalWindows, TimeWindows,
SlidingTimeWindows, etc.

| Component:setup(Context context) | | Component:isetup(Context context) |
| Dperatur::beginWinriiﬂwn:Iung windowld) ] | E}peratur::beginWin::iﬂw{Iﬂng windowld) ]
[ InputOperator::emitTuples() ]J { |HPUtF'ﬂﬂ;IPF0EESS{} ]J
[Dperatur::er;dWmduw{} ] [Dperatﬂr::e;mvﬁnduw{} ]
[Campﬂnent:r:teardﬂwn{}l ] {Camponent::teardﬂwn{} ]
Flow for Input Adapters Flow for Generic Operators

and Output Adapters

Source: https://apex.apache.org/docs/apex/operator_development/
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mn Execution Management

= Using YARN for execution tasks
= Using HDFS for persistent state

Node

@

STRAM

\
\
Node <§_D
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mn Understand YARN/Hadoop to
understand Apex operator execution
management

Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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mn Scalability

» Locality configuration for deployment of
streams and operators

= Affinity and anti-affinity rules

= Possible localities:
= THREAD LOCAL (intra-thread)
= CONTAINER_LOCAL (intra-process)

= NODE_LOCAL (inter-process but within a Hadoop
node)

= RACK LOCAL (inter-node)
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mn Operators Fault tolerance

= Checkpoint of operators: save state of
operators (e.g. into HDFS)

= @Stateless no checkpoint

= Check point interval:
CHECKPOINT_WINDOW_ COUNT

= Recovery
= At least once
= At most once
= Exactly once
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IS Example of Partitioning and
unification in Anex

=  Dynamic Partition . . . .
=  Partition operators

- Dynamic. Specifying Physical DAG with (1a, 1b, 1c), and (2a, 2b): Bottleneck on intermediate Unifier
when a partition should e
be done h 9

= Unifiers for combining “@
results (reduce) e Q

= StreamCodec

=  For deciding which
tuples go to which
partitions

Physical DAG with (1a, 1b, 1c), and (2a, 2b): No bottleneck

» Using hashcode and
masking mechanism

Source:
https://apex.apache.org/docs/apex/application_development/#partitioning
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mn Fault tolerance — Recovery in Apex

= Atleast once
= Downstream operators are restarted
= Upstream operators are replayed

= At most once

= Assume that data can be lost: restart the operator
and subscribe to new data from upstream

= Exactly once

= https://www.datatorrent.com/blog/end-to-end-exactly-
once-with-apache-apex/
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mn Exercise

How to make sure no duplication results when we
recover End-to-End Exactly Once?

How to use hash and masking mechanism to
distributed tuples?

How to deal with data between operators not in a
CONTAINER _LOCAL orin THREAD LOCAL

DST 2018 52



ADVANCED
WORKFLOWS/DATA PIPELINE
PROCESSING
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mn Use cases

= Access and coordinate many different compute
services, data sources, deployment services,
etc, within an enterprise, for a particular goal

* Implementing complex ,business logics” of your
services

= Analytics-as a service: metrics, user activities
analytics, testing, e.g.

= Analytics of log files (generated by Aspects in
Lecture 3)

= Dynamic analytics of business activities
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Workflow and Pipeline/data
workflow

= Workflows: a set of coordinated activities
= Generic workflows of different categories of tasks

= Data workflows - data pipeline

,a pipeline is a set of data processing elements connected in
series, where the output of one element is the input of the next
one’

Source:

= We use a pipeline/data workflows to carry out a
data processing job
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https://en.wikipedia.org/wiki/Pipeline_(computing)

IS Example of Pipeline in Apache
Beam

Pipeline p = Pipeline.create(options);

// Concepts #2 and #3: Our pipeline applies the composite CountWords transform, and passes the
// static FormatAsTextFn() to the ParDo transform.
p.apply("ReadLines", TextIO.read().from{options.getInputFile()))

Lapply(new CountWords())

.apply(MapElements.via(new FormatAsTextFn()))

Lapply("WriteCounts", TextIO.write().to(options.getOutput())).

p.run(). . wailtUntilFinish();

Source: https://github.com/apache/beam/blob/master/examples/java/src/main/java/org/apache/beam/examples/WordCount.java
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mn Example with Node-RED

Node-RED http://nodered.org

Flow-based programming for the Internet of Things

o] v node properties
Read Station Data

% Name simpleanalytics| B~

e # Function
simpleanalytics

console.log(msg.payload);
var event = msg.payload;
measurement =JSON.parse(event);
alarm id =measurement.alarm id;
6~ if (alarm id ==312) {
7 console.log("There is a problem");
8 var result ={payload:msg.paylad};
Push Result to Cloud Data Hub 9 return result;
18- }
11

L Ny Yy 8

Figure source: Hong-Linh Truong, Enabling Edge Analytics of IoT Data: the Case of LoRaWAN, The 2018 Global IoT
Summit (GIoTS) 4-7 June 2018 in Bilbao, Spain
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IS Data analytics workflow execution

models

Gt —

Execution Engine

DST 2018
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Workflow and Pipeline/data
workflow

= But analytics have many more than just data
processing activities

= Storage: where is the data from? Where is the sink of
data?

» Communication of results
= |s software or human the receiver of the analytics results?:

= Software: messaging, serverless function, REST API,
Webhook?

= People: Email, SMS, ...
= Visualization of results: which tools?
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Your are In a situation:

= Many underlying distributed processing
frameworks
=  Apex, Spark, Flink, Google

=  Work with different underlying engines
= \Write only high-level pipelines
= Stick to your favour programming languages
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mn Apache Beam

» Goal: separate from pipelines from backend
engines

Read data Post-processing1 ( Store analysis
analytics result J 'L result

BEkS @ oo
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mn Apache Beam

= https://beam.apache.org/

= Suitable for data analysis processes that can be
divided into different independent tasks
= ETL (Extract, Transform and Load)
= Data Integration

= EXxecution principles:

= Mapping tasks in the pipeline to concrete tasks that
are supported by the selected back-end engine

= Coordinating task execution like workflows.
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mn Basic programming constructs

= Pipeline:
= For creating a pipeline
= PCollection
= Represent a distributed dataset

= Transform
[Output PCollection] = [Input PCollection] | [Transform]

» Possible transforms: ParDo, GroupByKey, Combine,
etc.
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A simple example with Google
Dataflow as back-end engine

import apache beam as beam
from apache_beam.options.pipeline options import PipelineOptions

p = beam.Pipeline(options=PipelineOptions())

entries = p | 'ReadHadoopResult' =>> beam.io.ReadFromText('gs://.../ElectricityAlarme
i/felectricity _alarm_frequency-2017-05-11-80-vn.csv')
class ExtractAlarmFrequency(beam.DoFn):
def process(self, elements):
return ....
frequency = entries| beam.ParDo(ExtractAlarmFrequency())

frequency | 'write' >> beam.io.WriteToText('gs://...[JElectricityAlarm’)
result = p.run()

result.wait until finish()
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mn Beam SQL

= https://beam.apache.org/documentation/dsls/sql
/

= High level SQL-like statements
= Combine with Java APIs

= Common features
= Aggregation functions
=  Windows
= User-defined functions
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But what if you need diverse types of
tasks with various back-end
services?

- Workflow systems
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mn Example of using workflows

Security-related informatio
and metrics from distribut
customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html
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Representing and programming
workflows/data workflows

= Programming languages
» General- and specific-purpose programming
languages, such as Java, Python, Swift

» Descriptive languages

» BPEL and several languages designed for
specific workflow engines
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Key requirements for us in the
Cloud

= Rich connectors to various data sources
= Computation engines
= Different underlying infrastructures

» REST and message broker integration
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Example with Apache Airflow



mn Airflow from Airbnb

* Features
= Dynamic, extensible, scalable workflows
= Programmable language based workflows
= Write workflows as programmable code

= Good and easy to study to understand concepts
of workflows/data pipeline
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http://airbnb.io/projects/airflow/

Many

connectors

DST 2018

subpackage
all

all_dbs
async
devel
devel_hadoop
celery
crypto
druid
gcp_api
jdbc

hdfs

hive
kerberos
ldap
mssql
mysql
password
postgres
qds
rabbitmg
s3

samba
slack
vertica
cloudant

redis

install command

pip install apache-airflow[all]

pip install apache-airflow[all_dbs]
pip install apache-airflow[async]
pip install apache-airflow[devel]
pip install apache-airflow[devel_hadoop]
pip install apache-airflow[celery]
pip install apache-airflow[crypto]
pip install apache-airflow[druid]
pip install apache-airflow[gcp_api]
pip install apache-airflow[jdbc]

pip install apache-airflow[hdfs]

pip install apache-airflow[hive]

pip install apache-airflow[kerberos]
pip install apache-airflow[ldap]

pip install apache-airflow[mssgl]
pip install apache-airflow[mysgl]
pip install apache-airflow[password]
pip install apache-airflow[postgres]
pip install apache-airflow[gds]

pip install apache-airflow[rabbitmg]
pip install apache-airflow[s3]

pip install apache-airflow[samba]
pip install apache-airflow[slack]
pip install apache-airflow[vertica]l
pip install apache-airflow[cloudant]
pip install apache-airflow[redis]

enables

All Airflow features known to man

All databases integrations

Async worker classes for gunicorn

Minimum dev tools requirements

Airflow + dependencies on the Hadoo)

CeleryExecutor

Encrypt connection passwords in met:

Druid.io related operators & hooks

Google Cloud Platform hooks and ope

JDBC hooks and operators

HDFS hooks and operators

All Hive related operators

kerberos integration for kerberized hac

ldap authentication for users

Microsoft SQL operators and hook, su

MySQL operators and hook, support a

Password Authentication for users

Postgres operators and hook, support

Enable QDS (gubole data services) sup

Rabbitmq support as a Celery backend
53Key5ensor , 53PrefixSensor
Hive25ambaOperator
5lackAPIPostOperator

Vertica hook support as an Airflow bat

Cloudant hook

Redis hooks and sensors
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mn Airflow Workflow structure

= Workflow is a DAG (Direct Acyclic Graph)

= A workflow consists of a set of activities
represented in a DAG
= Workflow and activities are programed using
Python — described in code
= Workflow activities are described by Airflow
operator objects

= Tasks are created when instantiating operator
objects
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mn Airflow from Airbnb

* Rich set of operators

= So that we can program different kinds of tasks and
Integrate with different systems

= Different Types of operators for workflow activities

= BashOperator, PythonOperator, EmailOperator,
HTTPOperator, SglOperator, Sensor,

= DockerOperator, HiveOperator,
S3FileTransferOperator, PrestoToMysqlOperator,
SlackOperator
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mn Example for processing signal file

Airflow
GUI

UserApp

4

worker Computing servers

j Notification MOTT brok
[download_signal_file]—-[ analyticsinternelusage]» sendresults rL Service - Q roker

\ "" \ N T (REST, NodelS)

—f -.."'-.

| -
I Localfile system T~ 4.
: (e.g. /opt/data/airflow) T~ ElasticSearch
y
[ Blob File Server ]

DST 2018 75

A
|
|
|
|
1




mn Example for processing signal file

12 DAG_NAME = 'signal upload file'

14 default_args = {

15 ‘owner': 'hong-linh-truong',
15 'depends_on_past': False,

17 'start_date': datetime.now(),
18 1

20 dag = DAG(DAG_NAME, schedule interval=None, default_args=default_args)

2 |
stations=["stationl", "stationZ"]

P
24
@ def checkSituation(**kwargs):
&y

f="'7
27 t ="'t
28 return t
29
30 downloadlogscript="curl file: home/truong/myprojects/mygit/rdsea-mobifone-training/data/opensignal /sample-0ct182016.csv -0 fopt/data/air
31
32 |t_downloadlogtocloud= BashOperator(
33 task_id="download signal_file",
34 bash_command=downloadlogscript,
35 dag = dag
36 )
37
38
39 t_analytics= BashOperator(
Elo] task_id="analyticsinternetusage",
41 bash_command="/usr/bin/python /home/trucng/myprojects/mygit/rdsea-mobifone-tjraining/examples/databases/elasticsearch/uploader/src/uploa
42 dag = dag
13 )
14 t_sendresult =SimpleHttpOperator(
15 task_id='sendresults’',
16 method='FOST',
17 http_conn_id='stationl’,
18 endpoint="api/update/credit’,
19 data=json.dumps({"userphone": "B66412345","credit":10}),
50 headers={"Content-Type": "application/json"},
31 dag = dag
32 )
33
34 t_analytics.set_upstream(t_downloadlogtocloud)
35 t_sendresult.set_upstream(t_analytics)
SR
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&+ Airflow  DAGs 3 rowse Admin~  Docs~ 1514UTC O

DAGs

Show :l entries Search:
(i} DAG Schedule Owner Recent Statuses ©@ Links
(i ] O | example_bash_operator m airflow PR WA= S+E=EDC
(i ] Off  example_branch_dop_operator_v3 airflow PR IWASS+E=EDC
i ] Off | example_branch_operator airflow PR IWA=SE=EC
(i ] Of  example_htip_operator airflow PR IWASS+E=EDC
i ] Ol example passing_params_via_test command airflow PR IWA=SE=EC
(i ] O example_python_operator m airflow PR WA= SE=EC
(i ] Off example_short_circuit_operator airflow PR WA= S+E=EC
(i ] Of  example_skip_dag airflow PR WA= SE=EC
(i ] Off example_subdag_operator airflow PR WA= S+E=EC
(i ] Off example_trigger_controller_dag airflow PR WA= S+E=EC
(i ] Off example_trigger target dag m airflow PR WA= S+E=EC
(i ] Of  example_twitter_dag Ekhtiar PR WA= S+E=EC
® |f&8  example_xcom airflow PR WA= SE=EDC
(i ] Of  signal_upload _file m hong-linh- PR WA= S+E=EC
truong
0 Tof  tutorial airflow PR WA= S+=ED

Showing 1 to 15 of 15 entries Previous Next



Elasticity control for
Workflows/Data Flows

= How to scale the workflows?

= Scheduling in a large resource pool (e.g., using
clusters)

= Elasticity controls of virtualized resources
(VMs/containers) for executing tasks

= Distributed Task Queue, e.g. Celery

Job description/request sent via queues
Results from jobs can be stored in some back-end
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http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

Il Other systems, e.g., AWS Data
Pipeline

Task: launch
data analysis

Task: copy
log files

Amazon EC2 Amazon S3 Amazon EMR

Components

- "CopyActivity",

45
§

-
{

"name" : "InputData”,

"type" : "MySqlDataNode”, {@CopyData_1_2012-08-25T17.00:00_Attempt=3

i
i

i)
i
c
£
£
E
T
(=)
w
£
T
2
&

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide
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Mﬂ Hybrid service design

= Stream analytics triggers datapipes?
= Stream analytics triggers workflows?
= Stream analytics triggers serverless functions?

= And another way around?
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mn Communicating results

= How to communicate results to the end user or
other components?

= Software integration with protocols and
Interactions in previous lectures

= People: conversational commerce
= More than just using SendGrid, Applozic, etc.

Here are examples of Duplex making phone calls (using different voices):

Duplex scheduling a hair salon appointment: [l gl J 0:03 ¢) g

Duplex calling a restaurant: > o 0:00 o) e—f

Source: https://ai.googleblog.com/2018/05/duplex-ai-

Source: https://developer.amazon.com/alexa-voice-service system-for-natural-conversation.html
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mn Summary

* Analytics-as-a-service for large-scale distributed
applications and big data analytics require different set
of tools

» Kafka, Apache Apex and Airflow are just some of the
key frameworks
» There are a lot of tools

= Need to understand common concepts and
distinguishable features

= Select them based on your use cases and application
functionality and performance requirements

=  [EXxercises:

= asmall application utilizing Kafka/MQTT and Apache Apex
= Log analytics using AOP and Kafka and Airflow
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mn Further materials

" http://www.corejavaguru.com/bigdata/storm/stream-groupings

https://dzone.com/articles/kafka-clients-at-most-once-at-least-once-exactly-o
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https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/
https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-documentdb/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://medium.com/walmartlabs/how-we-embraced-the-new-release-of-apache-kafka-9cf617546bb6
https://hevodata.com/blog/exactly-once-message-delivery-in-kafka/

Tul 1
Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien
hong-linh.truong@tuwien.ac.at
http://www.infosys.tuwien.ac.at/staff/truong
@linhsolar
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