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What this lecture is about?

 Large-scale data analytics

 Advanced messaging   

 Apache Kafka 

 Advanced data analytics with streaming data 

processing

 Main common features

 Stream processing examples with Apache Apex

 Advanced data analytics with workflows

 Data pipeline with Beam

 Complex workflows with Airflow
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Analytics-as-a-service

 Goals

 Developers, Service Providers & Infrastructure 

Providers: 

 Understand and manage services systems

 Service Providers: 

 Understand customers and optimize business

 Examples

 Analyze monitoring information, logs, user activities, etc. 

 Predict usage trends  for optimizing business

 Techniques  Big data analytics

 Handle and process big data at rest and in motion
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Key issues in large-scale data 

analytics

 Collect/produce messages from  distributed application 

components and large-scale monitoring systems

 Cross systems and cross layers

 Need scalable and reliable large-scale messaging broker 

systems

 Require workflow and stream data processing capabilities

 Integrate with various different types of services and data 

sources
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Example from Lecture 4
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Message 

Queue 

(MQTT/AMQP)

Ingest 

Client

NoSQL 

database

/Storage

…

Ingest 

Client

Ingest 

Client

IoT device

IoT device

IoT device

….

IoT device

IoT device

IoT device

• Should I use docker? VMs? 

• Where elasticity can be applied?

• Topic/data distribution to ingest clients?

• Multiple topics

• Amount of data per topic varies

• Should not have duplicate data 

in database



Implementation atop Google cloud
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Source: https://cloud.google.com/solutions/architecture/streamprocessing



Example: monitoring and security
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Security-related information 

and metrics from distributed 

customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html



Example: Bigdata analytics in SK 

Telco
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Source: Yousun Jeong https://www.slideshare.net/jerryjung7/stsg17-speaker-yousunjeong



Cloud services and big data  analytics

Data sources

(sensors, files, database, 

queues, log services)

Messaging systems

(e.g., Kafka, AMQP, 

MQTT)

Storage and Database

(S3, Google BigQuery, InfluxDB, HDFS, 

Cassandra, MongoDB, Elastic Search 

etc.)

Batch data processing 

systems

(e.g., Hadoop, Airflow, Spark)

Stream processing 

systems

(e.g. Apex, Kafka, Flink, 

WSO2, Google Dataflow)

Elastic Cloud Infrastructures 

(VMs, dockers, OpenStack elastic resource management tools, storage)

Warehouse 

Analytics

Operation/Management/

Business Services
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Recall: Message-oriented 

Middleware (MOM)

 Well-supported in large-scale systems for

 Persistent and asynchronous messages

 Scalable message handling

 Message communication and transformation

 publish/subscribe, routing, extraction, enrichment 

 Several implementations
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MQTT
Amazon SQS

JMS

Apache Kafka



Recall: Workflow of Web services

 You learn it from the Advanced Internet 

Computing course

 Typically for composing Web services from 

different enterprises/departments for different 

tasks  many things have been changed in the 

cloud environment

 For big data analytics and Analytics-as-a-

Service

 Tasks are not just from Web services
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APACHE KAFKA

http://kafka.apache.org/ , originally from LinkedIn
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http://kafka.apache.org/


Some use cases

 Producers generate a lot of realtime events

 Producers and consumers have different 

processing speeds

 E.g. activity logging
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Message queue

m3 m2 m1Producer 

(100x)

Consumer 

(10x)

 Rich and diverse types of events

 E.g. cloud-based logging

 Dealing with cases when consumers might be 

on and off (fault tolerance support)

Which techniques 

can be used to 

control this?



More than message broker

 Messaging features

 For transferring messages 

 Other frameworks in the ecosystem: RabbitMQ, Mostquitto

 Streaming processing

 Streaming applications handle data from streams

 Read and write data back to Kafka messaging 

brokers

 Other frameworks in the ecosystem: Apache Flink

and Apache Apex

 High-level SQL-style: KSQL

 Other possibilities: SQL-liked + Java in Apache Flink
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Kafka Messaging 



Kafka cluster

Kafka Design
 Use cluster of brokers to 

deliver messages

 A topic consists of 

different partitions

 Durable messages, 

ordered delivery via 

partitions

 Online/offline consumers

 Using filesystem heavily

for message storage and 

caching
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producer

Broker

Broker

Broker

Broker

Consumer

Partition m m3 m2 m1

… … …

s3 s2 s1Partition s

Topic



Messages, Topics and Partitions

 Ordered, immutable sequence of messages

 Messages are kept in a period of time (regardless of 

consumers or not)

 Support total order for messages within a partition

 Partitions are distributed among server
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Source: http://kafka.apache.org/documentation.html



Consumers

 Consumer pulls the data

 The consumer keeps a single pointer indicating 

the position in a partition to keep track the offset 

of the next message being consumed

 Why? 

 allow customers to design their speed

 support/optimize batching data

 easy to implement total order over message

 easy to implement reliable message/fault tolerance
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Example of a Producer
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Example of a consumer
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Message delivery

 Still remember message delivery guarantees?

 At most once

 At least once

 Exactly once
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Broker

Msg: “hello DST”Producer 

(100x)

Consumer 

B

Consumer 

A

Consumer 

C

What does it mean exactly one?

 Producer: Idempotent delivery  no duplicate entry in the log

 Transaction-like semantics: either message to ALL partition topics or not at all

 Consumer behavior management



Scalability and Fault Tolerance
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 Partitions are distributed 

and replicated among 

broker servers

 Consumers are 

organized

into groups

 Each message is 

delivered

to a consumer instance 

in a group

 One partition is assigned 

to one consumer

http://kafka.apache.org/documentation.html#majordesignelements



Partitions and partition replication

 Why partitions?

 Support scalability

 enable arbitrary data types and sizes for a 

topic

 enable parallelism in producing and 

consuming data

 But partitions are replicated, why?

 For fault tolerance 
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Partition Replication

The leader handles all read and write requests
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Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013



Consumer Group

 Consumer Group: a set of consumers

 is used to support scalability and fault tolerance

 allows multiple consumers to read a topic

 In one group: each partition is consumed by only 

consumer instance 

 Combine „queuing“ and „publish/subscribe“ model

 Enable different applications receive data from the 

same topic.

 different consumers in different groups can retrieve 

the same data
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Group rebalancing
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Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html



Key Questions/Thoughts

 Why do we need partitions per topic?

 arbitrary data handling, ordering guarantees, 

load balancing

 How to deal with high volume of realtime

events for online and offline consumers?

 partition, cluster, message storage, batch 

retrieval, etc.

 Queuing or publish-subscribe model?

 check how Kafka delivers messages to 

consumer instances/groups 
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Kafka vs 

RabbitMQ

Source: Philippe Dobbelaere and Kyumars

Sheykh Esmaili. 2017. Kafka versus 

RabbitMQ: A comparative study of two 

industry reference publish/subscribe 

implementations: Industry Paper. In 

Proceedings of the 11th ACM International 

Conference on Distributed and Event-

based Systems (DEBS '17). ACM, New 

York, NY, USA, 227-238. DOI: 

https://doi.org/10.1145/3093742.3093908 
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STREAMING DATA 

PROCESSING
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Batch, Stream and Interactive 

Analytics

Source: https://dzone.com/refcardz/apache-spark
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Recall: Centralized versus distributed 

processing topology

Complex Event Processing

(centralized processing)

Streaming Data Processing

(distributed processing)

Proces

sing

Usually only 

queries/patterns are written 
Code processing events and 

topologies  need to be 

written

Event cloud

Event source

Proces

sing

Proce

ssing Proces

sing

node

node

node

node

node node

Two views: streams of events or cloud of events
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Topology of operators

Structure of streaming data 

processing programs

 Data source operator: represents a source of streams

 Compute operators:  represents processing functions

 Native versus micro-batching
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External source

Data source 

Operator

Compute 

Operator

Compute 

Operator

Output/Sink 

Operator

Data source 

Operator



Key concepts

 Structure of the data processing

 Topology: Directed Acycle Graph (DAG) of operators

 Data input/output operators and compute operators

 Accepted various data sources through different 

connectors 

 Scheduling and execution environments

 Distributed tasks on multiple machines

 Each machine can run multiple tasks

 Stream: connects an output port from an operator to an 

input port to another operator

 Stream data is sliced into windows of data for compute 

operators
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Implementations

 Many implementation, e.g.

 Apache Storm

 https://storm.apache.org/

 Apache Spark 

 https://spark.apache.org/

 Apache Apex

 https://apex.apache.org/

 Apache Kafka and Apache Flink
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Check: 

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-2



Key common concepts

 Abstraction of streams

 Connector library

 Very important for application domains

 Runtime elasticity

 Add/remove (new) operators (and underlying 

computing node)

 Fault tolerance
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Abstraction of Data Streams
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Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can 

be  data  described by a primitive data type or by a 

complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements 

(tuples)

In Apache Kafka: data element is <Key,Value> tuple

 Data stream is the key abstraction



Example of an Apex application in 

Java
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Processor/Operators

 Streaming applications are built with a set of 

processors/operators: for data and computation
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Source: https://apex.apache.org/docs/malhar/

 Some common 

data operators 

(related to other 

lectures)

 MQTT

 AMQP

 Kafka
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Why are the richness and diversity of 

connectors important?
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Time and stream processing

Can you explain the time notion and the 

roles?



Fault tolerance

 Recovery

 At least once

 At most once 

 Exactly once

 E.g. Kafka Streams: Exactly once and at least once

 Note the difference between messaging and 

processing w.r.t fault tolerance
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Some (interesting) features of Apache Apex



DAG of Operators

 Ports: for input and output data

 Data in a stream: streaming windows
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Source: https://apex.apache.org/docs/apex-3.6/operator_development/



Processing data in operators 
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Different types of Windows: GlobalWindows, TimeWindows, 

SlidingTimeWindows, etc.

Source: https://apex.apache.org/docs/apex/operator_development/



Node

Container

Execution Management
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STRAM

Node

NodeNode

op op

op op

op

 Using YARN for execution tasks

 Using HDFS for persistent state



Understand YARN/Hadoop to 

understand Apex operator execution  

management
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Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html



Scalability

 Locality configuration  for deployment of 

streams and operators

 Affinity and anti-affinity rules

 Possible localities:

 THREAD_LOCAL (intra-thread)

 CONTAINER_LOCAL (intra-process)

 NODE_LOCAL (inter-process but within a Hadoop 

node)

 RACK_LOCAL (inter-node) 
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Operators Fault tolerance

 Checkpoint of operators: save state of 

operators (e.g. into HDFS)

 @Stateless no checkpoint

 Check point interval: 

CHECKPOINT_WINDOW_COUNT

 Recovery

 At least once

 At most once 

 Exactly once
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Example of Partitioning and 

unification in Apex
 Dynamic Partition

 Partition operators

 Dynamic: specifying 

when a partition should 

be done

 Unifiers for combining 

results (reduce)

 StreamCodec

 For deciding which 

tuples go to which 

partitions

 Using hashcode and 

masking mechanism
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Source: 

https://apex.apache.org/docs/apex/application_development/#partitioning



Fault tolerance – Recovery in Apex

 At least once

 Downstream operators are restarted

 Upstream operators are replayed

 At most once

 Assume that data can be lost: restart the operator 

and subscribe to new data from upstream

 Exactly once

 https://www.datatorrent.com/blog/end-to-end-exactly-

once-with-apache-apex/
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Exercise

How to make sure no duplication results when we 

recover End-to-End Exactly Once?

How to use hash and masking mechanism to 

distributed tuples?

How to deal with data between operators not in a 

CONTAINER_LOCAL or in THREAD_LOCAL
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ADVANCED 

WORKFLOWS/DATA PIPELINE 

PROCESSING
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Use cases

 Access and coordinate many different compute 

services, data sources, deployment services, 

etc,  within an enterprise, for a particular goal

 Implementing complex „business logics“ of your 

services

 Analytics-as a service:  metrics, user activities 

analytics,  testing, e.g.

 Analytics of log files (generated by Aspects in 

Lecture 3)

 Dynamic analytics of business activities
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Workflow and Pipeline/data 

workflow

 Workflows: a set of coordinated activities

 Generic workflows of different categories of tasks

 Data workflows  data pipeline

„a pipeline is a set of data processing elements connected in 

series, where the output of one element is the input of the next 

one”

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

 We use a pipeline/data workflows to carry out a 

data processing job
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https://en.wikipedia.org/wiki/Pipeline_(computing)


Example of Pipeline in Apache 

Beam
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Source: https://github.com/apache/beam/blob/master/examples/java/src/main/java/org/apache/beam/examples/WordCount.java



Example with Node-RED
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Figure source: Hong-Linh Truong, Enabling Edge Analytics of IoT Data: the Case of LoRaWAN, The 2018 Global IoT 

Summit (GIoTS) 4-7 June 2018 in Bilbao, Spain 

http://nodered.org



Data analytics workflow execution 

models
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Data analytics 

workflows Execution Engine

Local Scheduler

job job job job

Web 

serviceWeb 

serviceWeb 

service
Web 

service

Data sources



Workflow and Pipeline/data 

workflow

 But analytics have many more than just data 

processing activities

 Storage: where is the data from? Where is the sink of  

data?

 Communication of results

 is software or human the receiver of the analytics results?: 

 Software: messaging, serverless function, REST API, 

Webhook?

 People: Email, SMS, …

 Visualization of results: which tools?

DST  2018 59



DST  2018 60

Your are in a situation:

 Many underlying distributed processing 

frameworks

 Apex, Spark, Flink, Google

 Work with different underlying engines

 Write only high-level pipelines

 Stick to your favour programming languages



Apache Beam

 Goal: separate from pipelines from backend 

engines

DST  2018 61

Read data 

analytics 

Post-processing 

result
Store analysis 

result



Apache Beam

 https://beam.apache.org/

 Suitable for data analysis processes that can be 

divided into different independent tasks

 ETL (Extract, Transform and Load) 

 Data Integration

 Execution principles:

 Mapping tasks in the pipeline to concrete tasks that 

are supported by the selected back-end engine

 Coordinating task execution like workflows.

DST  2018 62



Basic programming constructs

 Pipeline: 

 For creating a pipeline

 PCollection

 Represent a distributed dataset

 Transform

[Output PCollection] = [Input PCollection] | [Transform]

 Possible transforms: ParDo, GroupByKey, Combine, 

etc. 
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A simple example with Google 

Dataflow as back-end engine
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Beam SQL

 https://beam.apache.org/documentation/dsls/sql

/

 High level SQL-like statements

 Combine with Java APIs

 Common features

 Aggregation functions

 Windows

 User-defined functions

DST  2018 65



DST  2018 66

But what if you need  diverse types of 

tasks with various back-end 

services?

 Workflow systems



Example of using workflows

DST  2018 67

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Security-related information 

and metrics from distributed 

customers



Representing and programming

workflows/data workflows

 Programming languages

 General- and specific-purpose programming 
languages, such as Java, Python, Swift

 Descriptive languages

 BPEL and several languages designed for 
specific workflow engines
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Key requirements for us in the 

Cloud

 Rich connectors to various data sources

 Computation engines

 Different underlying infrastructures 

 REST and message broker integration 
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Example with Apache Airflow



Airflow from Airbnb

 http://airbnb.io/projects/airflow/

 Features

 Dynamic, extensible, scalable workflows

 Programmable language based workflows

 Write workflows as programmable code

 Good and easy to study to understand concepts 

of workflows/data pipeline
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http://airbnb.io/projects/airflow/


Many 

connectors
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Airflow Workflow structure

 Workflow is a DAG (Direct Acyclic Graph)

 A workflow consists of a set of activities 

represented in a DAG

 Workflow and activities are programed using 

Python – described in code

 Workflow activities are described by Airflow 

operator objects

 Tasks are created when instantiating operator 

objects 
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Airflow from Airbnb

 Rich set of operators

 So that we can program different kinds of tasks and 

integrate with different systems

 Different Types of  operators for workflow activities

 BashOperator, PythonOperator, EmailOperator,  

HTTPOperator, SqlOperator, Sensor, 

 DockerOperator, HiveOperator, 

S3FileTransferOperator, PrestoToMysqlOperator, 

SlackOperator
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Example for processing signal file
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Example for processing signal file
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Examples
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Elasticity control for 

Workflows/Data Flows

 How to scale the workflows?

 Scheduling in a large resource pool (e.g., using 

clusters)

 Elasticity controls of virtualized resources 

(VMs/containers) for executing tasks

 Distributed Task Queue, e.g. Celery 
http://docs.celeryproject.org/en/latest/getting-

started/brokers/index.html

Job description/request sent via queues

Results from jobs can be stored in some back-end
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http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html


Other systems, e.g., AWS Data 

Pipeline
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http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide



Hybrid service design

 Stream analytics triggers datapipes?

 Stream analytics triggers workflows?

 Stream analytics triggers serverless functions?

 And another way around?

DST  2018 80



Communicating results

 How to communicate results to the end user or 

other components?

 Software integration with protocols and 

interactions in previous lectures

 People: conversational commerce 

 More than just using SendGrid, Applozic, etc.
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Source: https://developer.amazon.com/alexa-voice-service

Source: https://ai.googleblog.com/2018/05/duplex-ai-

system-for-natural-conversation.html



Summary

 Analytics-as-a-service for large-scale distributed 

applications and big data analytics require different set 

of tools

 Kafka, Apache Apex and Airflow are just some of the 

key frameworks

 There are a lot of tools 

 Need to understand common concepts and 

distinguishable features

 Select them based on your use cases and application 

functionality and performance requirements

 Exercises: 

 a small application utilizing Kafka/MQTT and Apache Apex

 Log analytics using AOP and Kafka and Airflow
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Further materials

 http://kafka.apache.org

 http://www.corejavaguru.com/bigdata/storm/stream-groupings 

 https://cloud.google.com/dataflow/docs/

 http://storm.apache.org/

 https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-

documentdb/

 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

 https://medium.com/walmartlabs/how-we-embraced-the-new-release-of-apache-kafka-

9cf617546bb6

 https://hevodata.com/blog/exactly-once-message-delivery-in-kafka/

 https://dzone.com/articles/kafka-clients-at-most-once-at-least-once-exactly-o
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https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/
https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-documentdb/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://medium.com/walmartlabs/how-we-embraced-the-new-release-of-apache-kafka-9cf617546bb6
https://hevodata.com/blog/exactly-once-message-delivery-in-kafka/
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Thanks for 
your attention
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