

DST Summer 2018

Advanced Data Processing Techniques for Distributed Applications and Systems

Hong-Linh Truong Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at www.lnfosys.tuwien.ac.at/staff/truong @linhsolar

What this lecture is about?

- Large-scale data analytics
- Advanced messaging
 - Apache Kafka
- Advanced data analytics with streaming data processing
 - Main common features
 - Stream processing examples with Apache Apex
- Advanced data analytics with workflows
 - Data pipeline with Beam
 - Complex workflows with Airflow

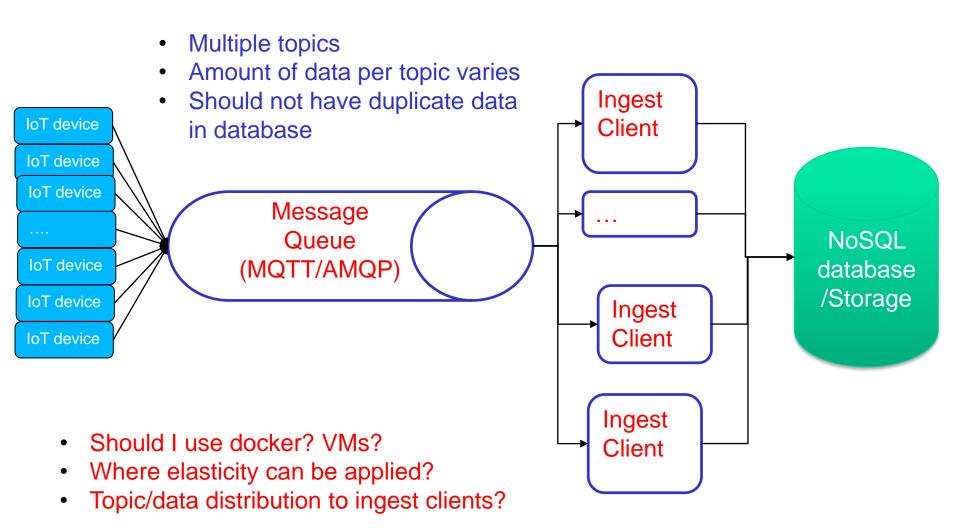
Analytics-as-a-service

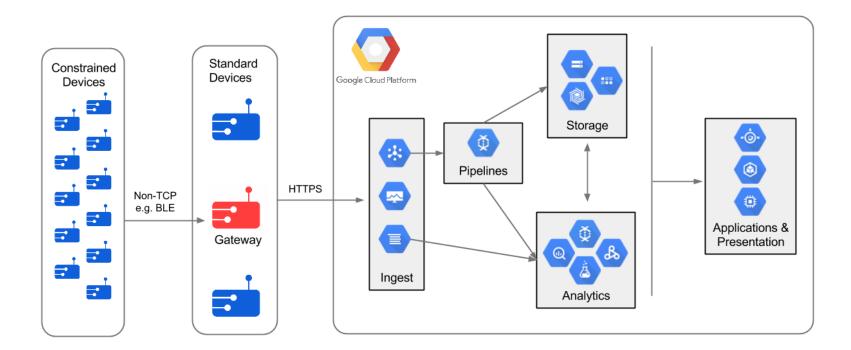
- Goals
 - Developers, Service Providers & Infrastructure Providers:
 - Understand and manage services systems
 - Service Providers:
 - Understand customers and optimize business
- Examples
 - Analyze monitoring information, logs, user activities, etc.
 - Predict usage trends for optimizing business
- Techniques \rightarrow Big data analytics
 - Handle and process big data at rest and in motion

Key issues in large-scale data analytics

- Collect/produce messages from distributed application components and large-scale monitoring systems
 - Cross systems and cross layers
- Need scalable and reliable large-scale messaging broker systems
- Require workflow and stream data processing capabilities
- Integrate with various different types of services and data sources

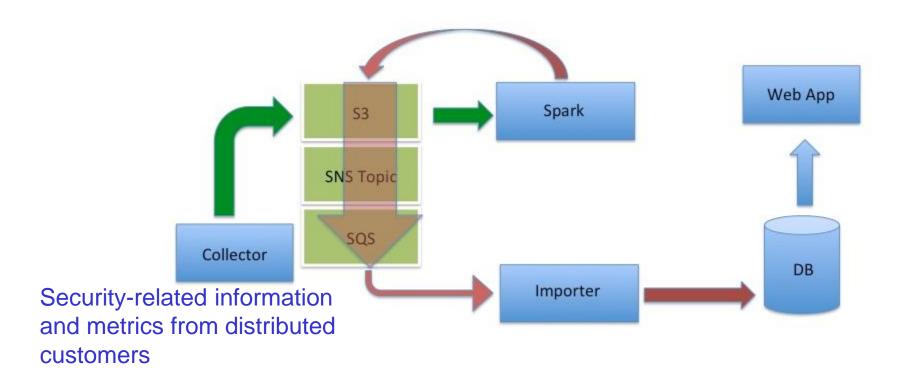
Example from Lecture 4





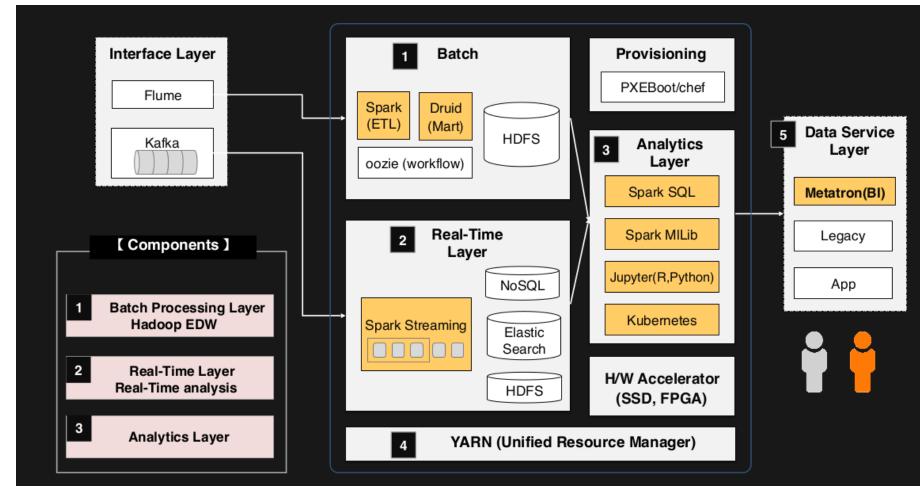
Source: https://cloud.google.com/solutions/architecture/streamprocessing

Example: monitoring and security



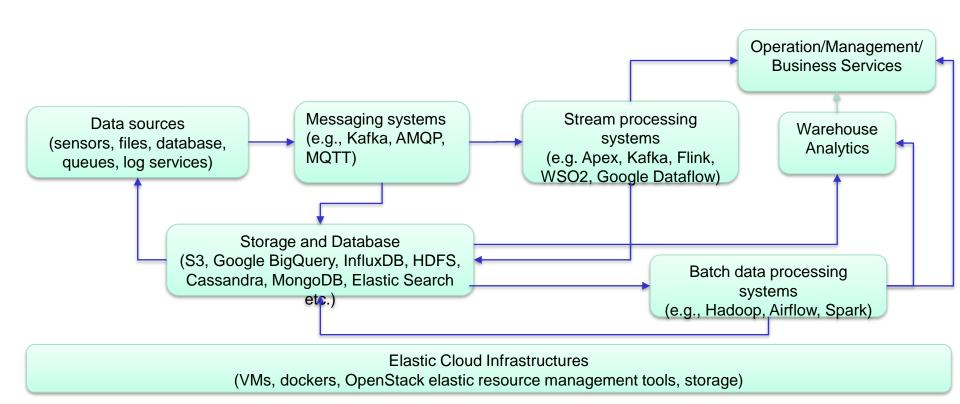
Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Example: Bigdata analytics in SK Telco



Source: Yousun Jeong https://www.slideshare.net/jerryjung7/stsg17-speaker-yousunjeong

Cloud services and big data analytics



Recall: Message-oriented Middleware (MOM)

- Well-supported in large-scale systems for
 - Persistent and asynchronous messages
 - Scalable message handling
- Message communication and transformation
 - publish/subscribe, routing, extraction, enrichment
- Several implementations

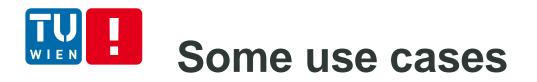
CloudMQTT

Recall: Workflow of Web services

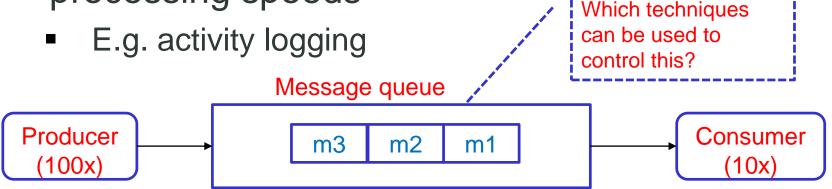
- You learn it from the Advanced Internet Computing course
- Typically for composing Web services from different enterprises/departments for different tasks → many things have been changed in the cloud environment
- For big data analytics and Analytics-as-a-Service
 - Tasks are not just from Web services

http://kafka.apache.org/, originally from LinkedIn

APACHE KAFKA



- Producers generate a lot of realtime events
- Producers and consumers have different processing speeds

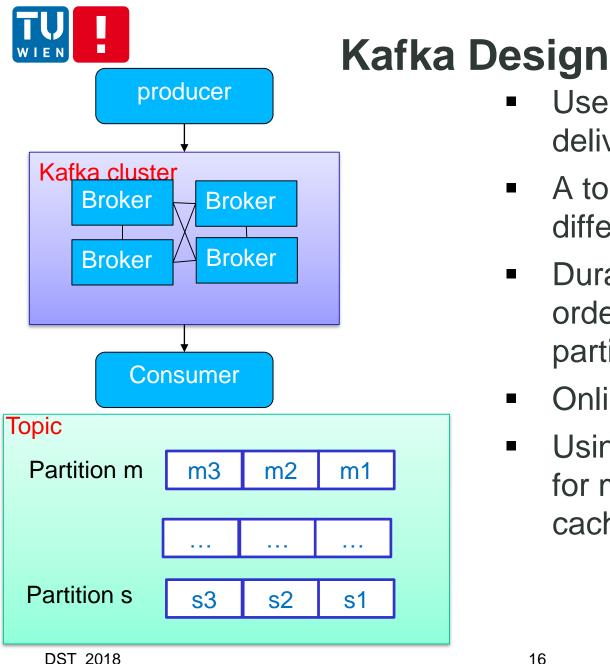


- Rich and diverse types of events
 - E.g. cloud-based logging
- Dealing with cases when consumers might be on and off (fault tolerance support)

More than message broker

- Messaging features
 - For transferring messages
 - Other frameworks in the ecosystem: RabbitMQ, Mostquitto
- Streaming processing
 - Streaming applications handle data from streams
 - Read and write data back to Kafka messaging brokers
 - Other frameworks in the ecosystem: Apache Flink and Apache Apex
- High-level SQL-style: KSQL
 - Other possibilities: SQL-liked + Java in Apache Flink

Kafka Messaging

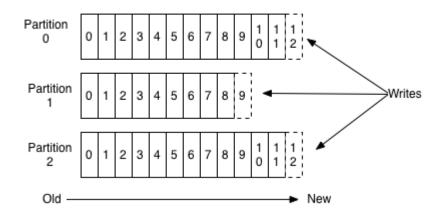


- Use cluster of brokers to deliver messages
- A topic consists of different partitions
- Durable messages, ordered delivery via partitions
- Online/offline consumers
- Using filesystem heavily for message storage and caching

Messages, Topics and Partitions

- Ordered, immutable sequence of messages
- Messages are kept in a period of time (regardless of consumers or not)
- Support total order for messages within a partition
- Partitions are distributed among server

Anatomy of a Topic



Source: http://kafka.apache.org/documentation.html

- Consumer pulls the data
- The consumer keeps a single pointer indicating the position in a partition to keep track the offset of the next message being consumed
- Why?
 - \rightarrow allow customers to design their speed
 - \rightarrow support/optimize batching data
 - \rightarrow easy to implement total order over message
 - \rightarrow easy to implement reliable message/fault tolerance

Example of a Producer

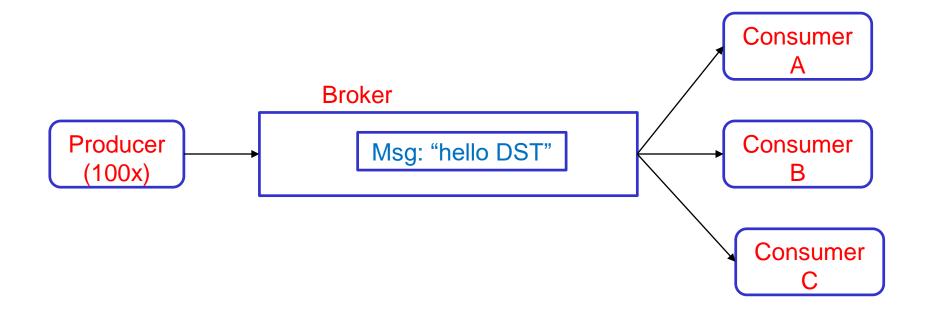
```
public SimpleProducer( String url, String inputfile, String topic ) {
    Properties props = new Properties();
    props.put("bootstrap.servers", url);
   props.put("client.id", "rdsea.io.training.demo");
    props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    producer = new KafkaProducer<Integer,String>(props);
    this.topic = topic;
    this.inputfile =inputfile;
public void run() {
   int messageNo = 1;
 //read data from file:
    try {
        Reader in = new FileReader(inputfile);
        Iterable<CSVRecord> records = CSVFormat.RFC4180.withFirstRecordAsHeader().parse(in);
        for (CSVRecord record : records) {
            JsonObject event = new JsonObject();
            event.addProperty("USERPHONE", 6645);
            event.addProperty("TIME", Long.parseLong(record.get("TIME")));
            event.addProperty("lat", Float.parseFloat(record.get("LATITUDE")));
            event.addProperty("lon", Float.parseFloat(record.get("LONGITUDE")));
            event.addProperty("GSM BIT ERROR RATE", Float.parseFloat(record.get("GSM BIT ERROR RATE")));
            event.addProperty("GSM_SIGNAL_STRENGTH", Float.parseFloat(record.get("GSM_SIGNAL_STRENGTH")));
            //a simple way to handle missing data is to skip the record
            if (!record.get("LOC ACCURACY").equals("")) {
                event.addProperty("LOC ACCURACY", Float.parseFloat(record.get("LOC ACCURACY")));
            } else {
               continue;
            if (!record.get("LOC SPEED").equals("")) {
               event.addProperty("LOC SPEED", Float.parseFloat(record.get("LOC SPEED")));
            } else {
               continue;
            }
            String eventString = "{\"event\": " + event + "}";
            try {
                                    producer.send(new ProducerRecord<Integer,String>(topic,messageNo,eventString)).get();
                            } catch (ExecutionException e) {
                                   // TODO Auto-generated catch block
                                    e.printStackTrace();
                                                                                                                 C Stype
                System out printlp("Sept message: (" + messageNe + " + eventString + ")");
```

Example of a consumer

```
public class SimpleConsumer {
           private final KafkaConsumer<Integer, String> consumer;
           private final String topic:
           private final int pollNr;
           public SimpleConsumer(String url, String topic, int pollNr) {
               Properties props = new Properties();
               //just use standard example configuration
               props.put(ConsumerConfig.BOOTSTRAP SERVERS CONFIG, url);
               props.put(ConsumerConfig.GROUP ID CONFIG, "RDSEA Simple Consumer");
               props.put(ConsumerConfig.ENABLE AUTO COMMIT CONFIG, "true");
               props.put(ConsumerConfig.AUTO COMMIT INTERVAL MS CONFIG. "1000"):
               props.put(ConsumerConfig.SESSION TIMEOUT MS CONFIG, "30000");
               props.put(ConsumerConfig.KEY DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
               props.put(ConsumerConfig.VALUE DESERIALIZER CLASS CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
               consumer = new KafkaConsumer<Integer, String>(props);
               this.topic = topic:
               this.pollNr = pollNr;
           public void readData() {
    consumer.subscribe(Collections.singletonList(this.topic));
               ConsumerRecords<Integer, String> records = consumer.poll(pollNr);
               for (ConsumerRecord<Integer, String> record : records) {
                   System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset());
               public static void main(String[] args) {
                       // TODO Auto-generated method stub
                       if (args.length < 3) {
                   System.out.println("Usage: SimpleProducer kafka broker topic nr");
                   System.exit(0);
                       int pollNr =Integer.valueOf(args[2]);
               SimpleConsumer consumer = new SimpleConsumer(args[0], args[1], pollNr);
               consumer.readData():
DST 2018
```


- Still remember message delivery guarantees?
 - At most once
 - At least once
 - Exactly once

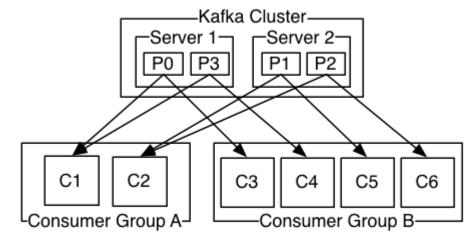
What does it mean exactly one?



- Producer: Idempotent delivery \rightarrow no duplicate entry in the log
- Transaction-like semantics: either message to ALL partition topics or not at all
- Consumer behavior management

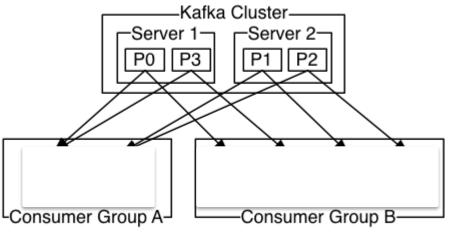
Scalability and Fault Tolerance

- Partitions are distributed and replicated among broker servers
- Consumers are organized into groups



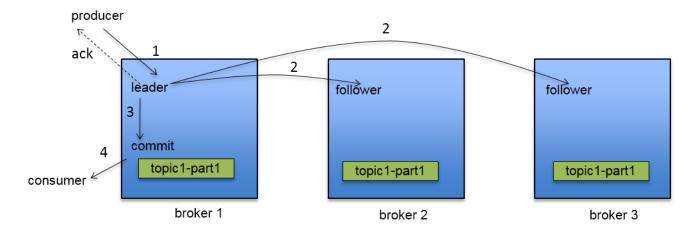
- Each message is delivered to a consumer instance in a group
- One partition is assigned to one consumer

http://kafka.apache.org/documentation.html#maiordesignelements



Partitions and partition replication

- Why partitions?
 - Support scalability
 - enable arbitrary data types and sizes for a topic
 - enable parallelism in producing and consuming data
- But partitions are replicated, why?
 - For fault tolerance



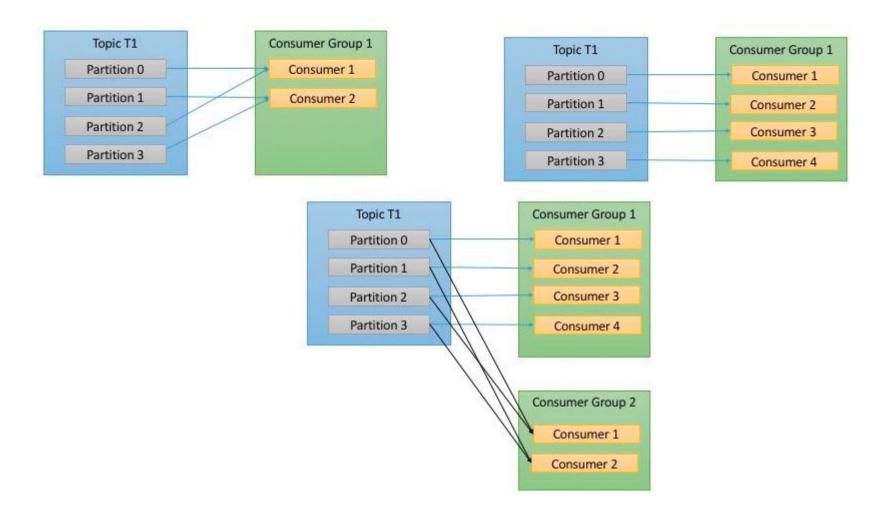
Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013

The leader handles all read and write requests

Consumer Group

- Consumer Group: a set of consumers
 - is used to support scalability and fault tolerance
 - allows multiple consumers to read a topic
- In one group: each partition is consumed by only consumer instance
 - Combine "queuing" and "publish/subscribe" model
- Enable different applications receive data from the same topic.
 - different consumers in different groups can retrieve the same data

Group rebalancing



Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html

Key Questions/Thoughts

- Why do we need partitions per topic?
- \rightarrow arbitrary data handling, ordering guarantees, load balancing
- How to deal with high volume of realtime events for online and offline consumers?
- \rightarrow partition, cluster, message storage, batch retrieval, etc.
- Queuing or publish-subscribe model?
- → check how Kafka delivers messages to consumer instances/groups

Kafka vs RabbitMQ

Source: Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka versus RabbitMQ: A comparative study of two industry reference publish/subscribe implementations: Industry Paper. In Proceedings of the 11th ACM International Conference on Distributed and Eventbased Systems (DEBS '17). ACM, New York, NY, USA, 227-238. DOI: https://doi.org/10.1145/3093742.3093908

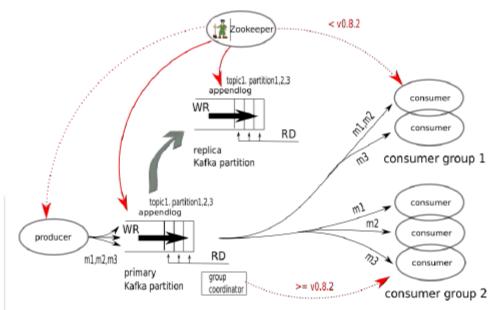


Figure 1: Kafka Architecture

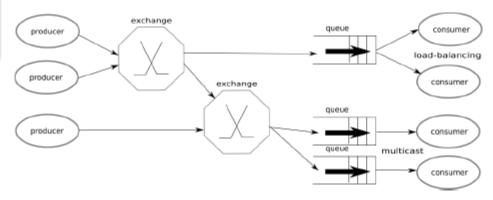
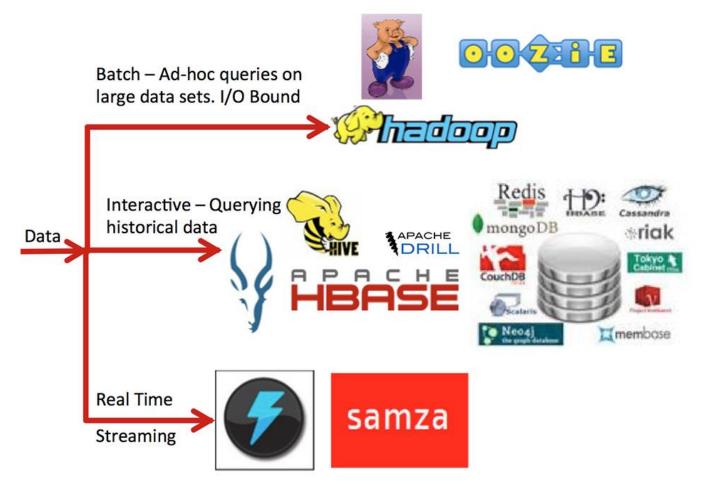


Figure 2: RabbitMQ (AMQP) Architecture

STREAMING DATA PROCESSING

Batch, Stream and Interactive Analytics

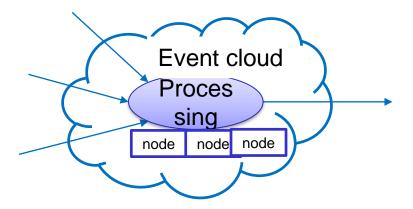


Source: https://dzone.com/refcardz/apache-spark

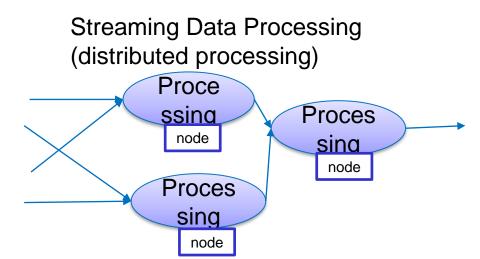
Recall: Centralized versus distributed processing topology

Two views: streams of events or cloud of events

Complex Event Processing (centralized processing)

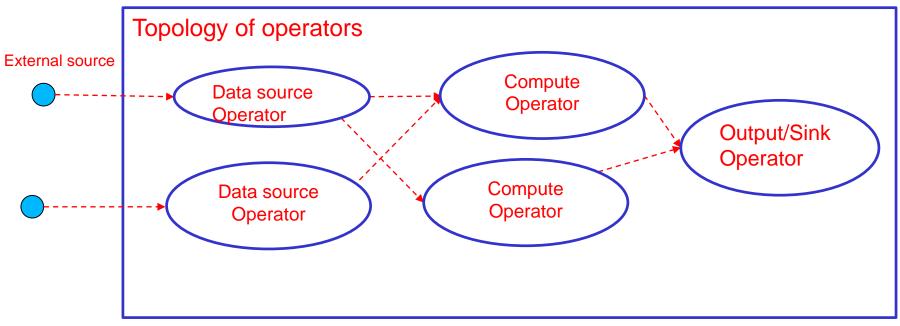


Usually only queries/patterns are written



Code processing events and topologies need to be written

Structure of streaming data processing programs



- Data source operator: represents a source of streams
- Compute operators: represents processing functions
- Native versus micro-batching

- Structure of the data processing
 - Topology: Directed Acycle Graph (DAG) of operators
 - Data input/output operators and compute operators
 - Accepted various data sources through different connectors
- Scheduling and execution environments
 - Distributed tasks on multiple machines
 - Each machine can run multiple tasks
- Stream: connects an output port from an operator to an input port to another operator
- Stream data is sliced into windows of data for compute operators

- Many implementation, e.g.
 - Apache Storm
 - https://storm.apache.org/
 - Apache Spark
 - https://spark.apache.org/
 - Apache Apex
 - https://apex.apache.org/
 - Apache Kafka and Apache Flink Check:

http://www.cakesolutions.net/teamblogs/comparison-of-apache-streamprocessing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-streamprocessing-frameworks-part-2

- Abstraction of streams
- Connector library
 - Very important for application domains
- Runtime elasticity
 - Add/remove (new) operators (and underlying computing node)
- Fault tolerance

Abstraction of Data Streams

Data stream is the key abstraction

Recall:

Data stream: a sequence/flow of data units Data units are defined by applications: a data unit can be data described by a primitive data type or by a complex data type, a serializable object, etc.

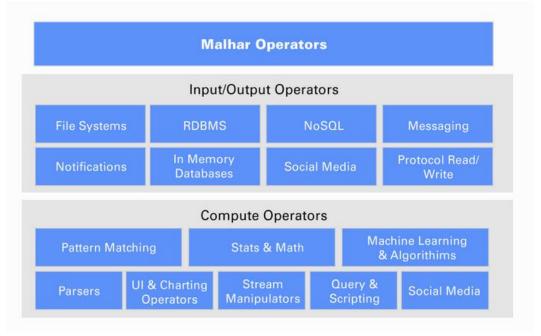
In Apache Apex: a stream of atomic data elements (tuples)

In Apache Kafka: data element is <Key,Value> tuple

Example of an Apex application in Java

DST 2018

 Streaming applications are built with a set of processors/operators: for data and computation



Source: https://apex.apache.org/docs/malhar/

- Some common data operators (related to other lectures)
 - MQTT
 - AMQP
 - Kafka

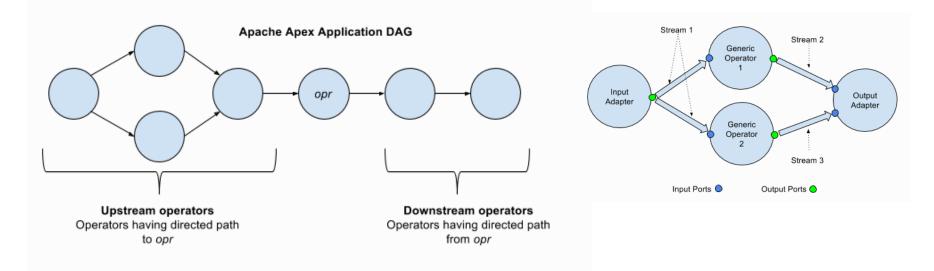
Why are the richness and diversity of connectors important?

Time and stream processing

Can you explain the time notion and the roles?

- Recovery
 - At least once
 - At most once
 - Exactly once
 - E.g. Kafka Streams: Exactly once and at least once
- Note the difference between messaging and processing w.r.t fault tolerance

Some (interesting) features of Apache Apex

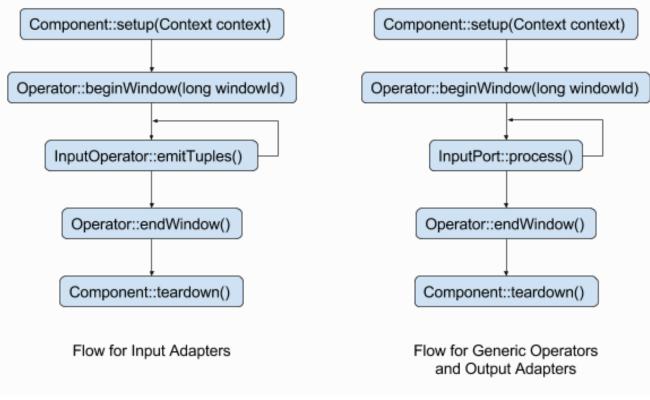


Source: https://apex.apache.org/docs/apex-3.6/operator_development/

- Ports: for input and output data
- Data in a stream: streaming windows

Processing data in operators

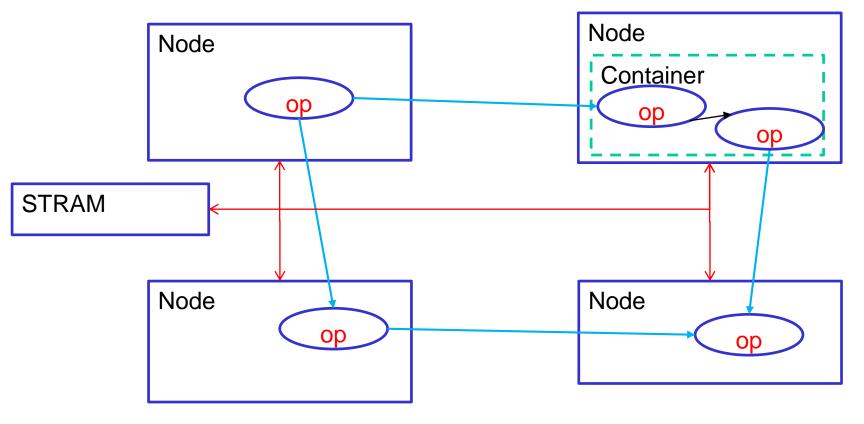
Different types of Windows: GlobalWindows, TimeWindows, SlidingTimeWindows, etc.



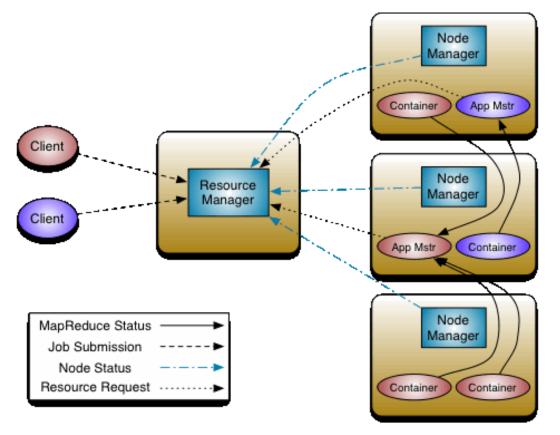
Source: https://apex.apache.org/docs/apex/operator_development/

Execution Management

- Using YARN for execution tasks
- Using HDFS for persistent state



Understand YARN/Hadoop to understand Apex operator execution management



Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

DST 2018

- Locality configuration for deployment of streams and operators
- Affinity and anti-affinity rules
- Possible localities:
 - THREAD_LOCAL (intra-thread)
 - CONTAINER_LOCAL (intra-process)
 - NODE_LOCAL (inter-process but within a Hadoop node)
 - RACK_LOCAL (inter-node)

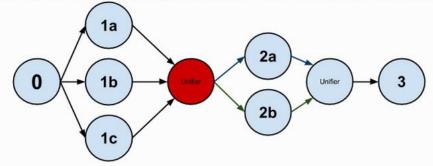
Operators Fault tolerance

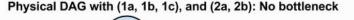
- Checkpoint of operators: save state of operators (e.g. into HDFS)
 - @Stateless no checkpoint
 - Check point interval: CHECKPOINT_WINDOW_COUNT
- Recovery
 - At least once
 - At most once
 - Exactly once

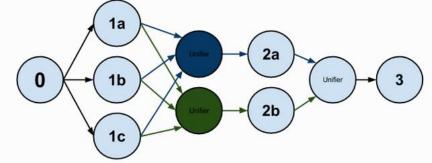
Example of Partitioning and unification in Apex

- Dynamic Partition
 - Partition operators
 - Dynamic: specifying when a partition should be done
 - Unifiers for combining results (reduce)
- StreamCodec
 - For deciding which tuples go to which partitions
 - Using hashcode and masking mechanism

Physical DAG with (1a, 1b, 1c), and (2a, 2b): Bottleneck on intermediate Unifier







Fault tolerance – Recovery in Apex

- At least once
 - Downstream operators are restarted
 - Upstream operators are replayed
- At most once
 - Assume that data can be lost: restart the operator and subscribe to new data from upstream
- Exactly once
 - https://www.datatorrent.com/blog/end-to-end-exactlyonce-with-apache-apex/

How to make sure no duplication results when we recover End-to-End Exactly Once?

How to use hash and masking mechanism to distributed tuples?

How to deal with data between operators not in a CONTAINER_LOCAL or in THREAD_LOCAL

ADVANCED WORKFLOWS/DATA PIPELINE PROCESSING

- Access and coordinate many different compute services, data sources, deployment services, etc, within an enterprise, for a particular goal
- Implementing complex "business logics" of your services
- Analytics-as a service: metrics, user activities analytics, testing, e.g.
 - Analytics of log files (generated by Aspects in Lecture 3)
 - Dynamic analytics of business activities

Workflow and Pipeline/data workflow

- Workflows: a set of coordinated activities
 - Generic workflows of different categories of tasks
 - Data workflows → data pipeline

"a pipeline is a set of data processing elements connected in series, where the output of one element is the input of the next one"

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

 We use a pipeline/data workflows to carry out a data processing job

Example of Pipeline in Apache Beam

176	Pipeline p = Pipeline.create(options);		
177			
178	// Concepts #2 and #3: Our pipeline applies the composite CountWords transform, and passes the		
179	// static FormatAsTextFn() to the ParDo transform.		
180	p.apply("ReadLines", TextIO.read().from(options.getInputFile()))		
181	.apply(new CountWords())		
182	.apply(MapElements.via(new FormatAsTextFn()))		
183	.apply("WriteCounts", TextIO.write().to(options.getOutput()));		
184			
185	p.run().waitUntilFinish();		

Source: https://github.com/apache/beam/blob/master/examples/java/src/main/java/org/apache/beam/examples/WordCount.java

Example with Node-RED

Node-RED

Flow-based programming for the Internet of Things

http://nodered.org

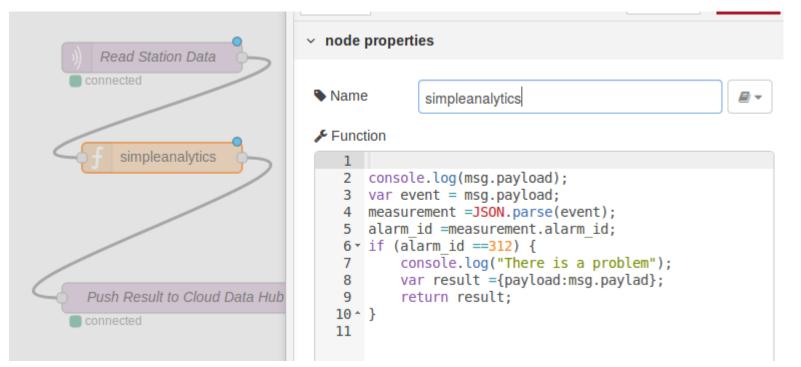
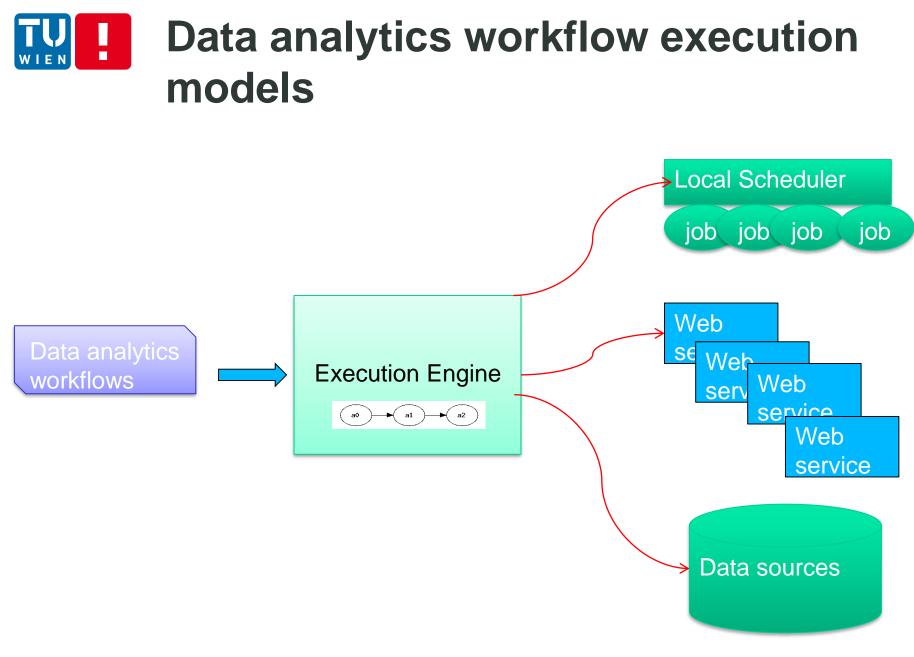


Figure source: Hong-Linh Truong, Enabling Edge Analytics of IoT Data: the Case of LoRaWAN, The 2018 Global IoT Summit (GIoTS) 4-7 June 2018 in Bilbao, Spain

DST 2018



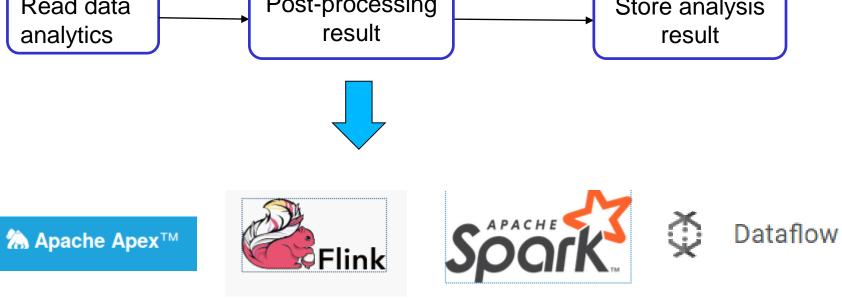
Workflow and Pipeline/data workflow

- But analytics have many more than just data processing activities
 - Storage: where is the data from? Where is the sink of data?
 - Communication of results
 - is software or human the receiver of the analytics results?:
 - Software: messaging, serverless function, REST API, Webhook?
 - People: Email, SMS, …
 - Visualization of results: which tools?

Your are in a situation:

- Many underlying distributed processing frameworks
 - Apex, Spark, Flink, Google
- Work with different underlying engines
- Write only high-level pipelines
- Stick to your favour programming languages

 Goal: separate from pipelines from backend engines
 Read data
 Post-processing
 Store analysis



- https://beam.apache.org/
- Suitable for data analysis processes that can be divided into different independent tasks
 - ETL (Extract, Transform and Load)
 - Data Integration
- Execution principles:
 - Mapping tasks in the pipeline to concrete tasks that are supported by the selected back-end engine
 - Coordinating task execution like workflows.

Basic programming constructs

- Pipeline:
 - For creating a pipeline
- PCollection
 - Represent a distributed dataset
- Transform

[Output PCollection] = [Input PCollection] | [Transform]

 Possible transforms: ParDo, GroupByKey, Combine, etc.

A simple example with Google Dataflow as back-end engine

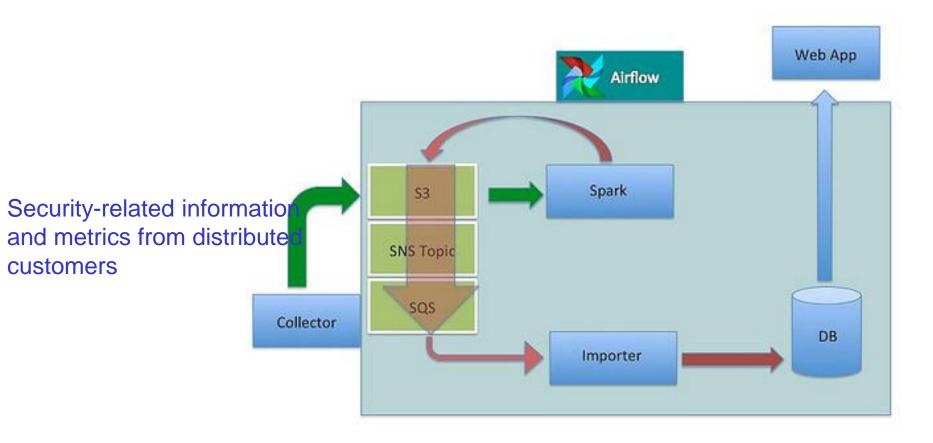
```
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
p = beam.Pipeline(options=PipelineOptions())
entries = p | 'ReadHadoopResult' >> beam.io.ReadFromText('gs://.../ElectricityAlarme
/electricity_alarm_frequency-2017-05-11-00-vn.csv')
class ExtractAlarmFrequency(beam.DoFn):
    def process(self, elements):
        ....
    return ....
frequency = entries| beam.ParDo(ExtractAlarmFrequency())
frequency | 'write' >> beam.io.WriteToText('gs://.../ElectricityAlarm')
result = p.run()
result.wait_until_finish()
```


- https://beam.apache.org/documentation/dsls/sql /
- High level SQL-like statements
- Combine with Java APIs
- Common features
 - Aggregation functions
 - Windows
 - User-defined functions

But what if you need diverse types of tasks with various back-end services?

→ Workflow systems

Example of using workflows



Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Representing and programming workflows/data workflows

- Programming languages
 - General- and specific-purpose programming languages, such as Java, Python, Swift
- Descriptive languages
 - BPEL and several languages designed for specific workflow engines

Key requirements for us in the Cloud

- Rich connectors to various data sources
- Computation engines
- Different underlying infrastructures
- REST and message broker integration

Example with Apache Airflow

- http://airbnb.io/projects/airflow/
 - Features
 - Dynamic, extensible, scalable workflows
 - Programmable language based workflows
 - Write workflows as programmable code
- Good and easy to study to understand concepts of workflows/data pipeline

Many connectors

subpackage	install command	enables	
all	<pre>pip install apache-airflow[all]</pre>	All Airflow features known to man	
all_dbs	<pre>pip install apache-airflow[all_dbs]</pre>	All databases integrations	
async	<pre>pip install apache-airflow[async]</pre>	Async worker classes for gunicorn	
devel	<pre>pip install apache-airflow[devel]</pre>	Minimum dev tools requirements	
devel_hadoop	<pre>pip install apache-airflow[devel_hadoop]</pre>	Airflow + dependencies on the Hadoo	
celery	<pre>pip install apache-airflow[celery]</pre>	CeleryExecutor	
crypto	<pre>pip install apache-airflow[crypto]</pre>	Encrypt connection passwords in meta	
druid	<pre>pip install apache-airflow[druid]</pre>	Druid.io related operators & hooks	
gcp_api	<pre>pip install apache-airflow[gcp_api]</pre>	Google Cloud Platform hooks and ope	
jdbc	<pre>pip install apache-airflow[jdbc]</pre>	JDBC hooks and operators	
hdfs	<pre>pip install apache-airflow[hdfs]</pre>	HDFS hooks and operators	
hive	<pre>pip install apache-airflow[hive]</pre>	All Hive related operators	
kerberos	<pre>pip install apache-airflow[kerberos]</pre>	kerberos integration for kerberized had	
ldap	<pre>pip install apache-airflow[ldap]</pre>	Idap authentication for users	
mssql	<pre>pip install apache-airflow[mssql]</pre>	Microsoft SQL operators and hook, su	
mysql	<pre>pip install apache-airflow[mysql]</pre>	MySQL operators and hook, support a	
password	<pre>pip install apache-airflow[password]</pre>	Password Authentication for users	
postgres	<pre>pip install apache-airflow[postgres]</pre>	Postgres operators and hook, support	
qds	<pre>pip install apache-airflow[qds]</pre>	Enable QDS (qubole data services) sup	
rabbitmq	<pre>pip install apache-airflow[rabbitmq]</pre>	Rabbitmq support as a Celery backend	
s3	<pre>pip install apache-airflow[s3]</pre>	S3KeySensor, S3PrefixSensor	
samba	<pre>pip install apache-airflow[samba]</pre>	Hive2SambaOperator	
slack	<pre>pip install apache-airflow[slack]</pre>	SlackAPIPostOperator	
vertica	<pre>pip install apache-airflow[vertica]</pre>	Vertica hook support as an Airflow bac	
cloudant	<pre>pip install apache-airflow[cloudant]</pre>	Cloudant hook	
redis	<pre>pip install apache-airflow[redis]</pre>	Redis hooks and sensors	

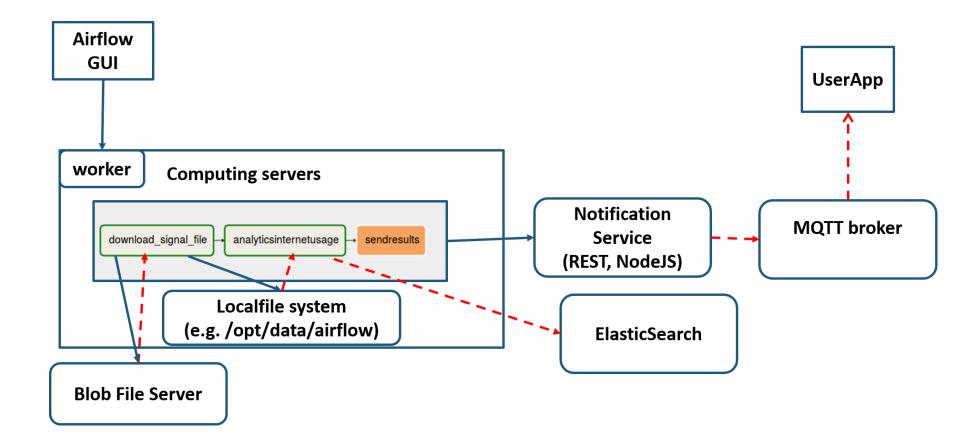
Airflow Workflow structure

- Workflow is a DAG (Direct Acyclic Graph)
 - A workflow consists of a set of activities represented in a DAG
 - Workflow and activities are programed using Python – described in code
- Workflow activities are described by Airflow operator objects
 - Tasks are created when instantiating operator objects

Airflow from Airbnb

- Rich set of operators
 - So that we can program different kinds of tasks and integrate with different systems
- Different Types of operators for workflow activities
 - BashOperator, PythonOperator, EmailOperator, HTTPOperator, SqlOperator, Sensor,
 - DockerOperator, HiveOperator,
 S3FileTransferOperator, PrestoToMysqlOperator,
 SlackOperator

Example for processing signal file



Example for processing signal file

```
DAG NAME = 'signal upload file'
  default args = {
       'owner': 'hong-linh-truong',
       'depends on past': False,
      'start date': datetime.now(),
  dag = DAG(DAG NAME, schedule interval=None, default args=default args)
  stations=["station1", "station2"]

def checkSituation(**kwargs):

      f = 'f'
      t = 't'
      return t
L downloadlogscript="curl_file:///home/truong/myprojects/mygit/rdsea-mobifone-training/data/opensignal/sample-Oct182016.csy -o /opt/data/air
 t downloadlogtocloud= BashOperator(
      task id="download signal file",
      bash command=downloadlogscript,
      dag = dag
      )
  t analytics= BashOperator(
      task id="analyticsinternetusage",
      bash command="/usr/bin/python /home/truong/myprojects/mygit/rdsea-mobifone-training/examples/databases/elasticsearch/uploader/src/uploa
      dag = dag
  t sendresult =SimpleHttpOperator(
      task id='sendresults',
      method='POST',
      http conn id='station1',
      endpoint='api/update/credit',
      data=json.dumps({"userphone": "066412345","credit":10}),
      headers={"Content-Type": "application/json"},
      dag = dag
  t analytics.set upstream(t downloadlogtocloud)
  t sendresult.set upstream(t analytics)
```

11 12

13 14

15

16

17

18 19 20

21 22 <u>(1</u>

24 <u>&</u>

Â

27

28

29 30

31 32

33

34

35

36

37 38 39

40

41

42

47

48

49

50

51

52 53 54

55

= 0

Airflow DAGs

Data Profiling - Browse - Adm

15:14 UTC

DAC		entries			S	earch:
	0	DAG	Schedule	Owner	Recent Statuses	Links
0	Off	example_bash_operator	00***	airflow		♦ # ц ★ ≣ У ≣ С
8	Off	example_branch_dop_operator_v3	*/1 ****	airflow		♦ # 山 ★ ☰ 5 ☰ 5
8	Off	example_branch_operator	@daily	airflow		♦ # 山 ★ ☰ ╱
0	Off	example_http_operator	1 day, 0:00:00	airflow		♥ ₩ Ji ★ ≝ ≁ ≣ С
0	Off	example_passing_params_via_test_command	*/1 ****	airflow		♥ ♥ Ji ★ Ĕ ≁ ≣ C
0	Off	example_python_operator	None	airflow		♦ ₩ Ji ★ ≣ ≯ ≣ C
0	Off	example_short_circuit_operator	1 day, 0:00:00	airflow		♥ ₩ Ji ★ ≣ ✓ ≣ C
0	Off	example_skip_dag	1 day, 0:00:00	airflow		♦ # Ji ★ ≣ ≯ ≣ C
0	Off	example_subdag_operator	@once	airflow		♦ # di ★ ≣ ≯ ≣ 0
0	Off	example_trigger_controller_dag	@once	airflow		♦ ₩ Ji ★ Ĕ ≁ ≣ C
0	Off	example_trigger_target_dag	None	airflow		♦ ₩ di ★ ≣ ≯ ≣ Ø
0	Off	example_twitter_dag	@daily	Ekhtiar		♥ ₩ di ★ ≣ ≯ ≣ Ø
0	Off	example_xcom	@once	airflow		♦ # di k ≣ ⊁ ≣ C
8	Off	signal_upload_file	None	hong-linh- truong		♥₩山水主/≡©
8	Off	tutorial	1 day, 0:00:00	airflow		◆★山太三ヶ三〇

Previous 1 Next

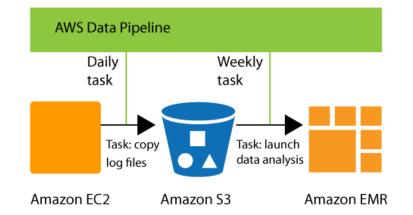
Elasticity control for Workflows/Data Flows

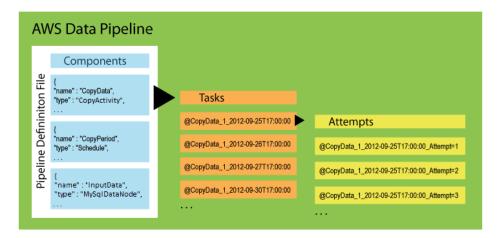
- How to scale the workflows?
- Scheduling in a large resource pool (e.g., using clusters)
- Elasticity controls of virtualized resources (VMs/containers) for executing tasks
- Distributed Task Queue, e.g. Celery

http://docs.celeryproject.org/en/latest/gettingstarted/brokers/index.html

Job description/request sent via queues Results from jobs can be stored in some back-end

Other systems, e.g., AWS Data Pipeline





http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide

DST 2018

- Stream analytics triggers datapipes?
- Stream analytics triggers workflows?
- Stream analytics triggers serverless functions?
- And another way around?

Communicating results

- How to communicate results to the end user or other components?
- Software integration with protocols and interactions in previous lectures
- People: conversational commerce
 - More than just using SendGrid, Applozic, etc.

Here are examples of Duplex making phone calls (using different voices):

Duplex scheduling a hair salon appointment:

Duplex calling a restaurant:

Source: https://developer.amazon.com/alexa-voice-service

Source: https://ai.googleblog.com/2018/05/duplex-aisystem-for-natural-conversation.html

- Analytics-as-a-service for large-scale distributed applications and big data analytics require different set of tools
- Kafka, Apache Apex and Airflow are just some of the key frameworks
 - There are a lot of tools
- Need to understand common concepts and distinguishable features
- Select them based on your use cases and application functionality and performance requirements
- Exercises:
 - a small application utilizing Kafka/MQTT and Apache Apex
 - Log analytics using AOP and Kafka and Airflow

DST 2018

Further materials

- http://kafka.apache.org
- http://www.corejavaguru.com/bigdata/storm/stream-groupings
- https://cloud.google.com/dataflow/docs/
- http://storm.apache.org/
 - https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhubdocumentdb/
 - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
 - https://medium.com/walmartlabs/how-we-embraced-the-new-release-of-apache-kafka-9cf617546bb6
 - https://hevodata.com/blog/exactly-once-message-delivery-in-kafka/
 - https://dzone.com/articles/kafka-clients-at-most-once-at-least-once-exactly-o

Thanks for your attention

Hong-Linh Truong Faculty of Informatics, TU Wien hong-linh.truong@tuwien.ac.at http://www.infosys.tuwien.ac.at/staff/truong @linhsolar