
Advanced Data Processing Techniques

for Distributed Applications and Systems

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at
www.Infosys.tuwien.ac.at/staff/truong

@linhsolar

DST Summer 2018

DST 2018 1

What this lecture is about?

 Large-scale data analytics

 Advanced messaging

 Apache Kafka

 Advanced data analytics with streaming data

processing

 Main common features

 Stream processing examples with Apache Apex

 Advanced data analytics with workflows

 Data pipeline with Beam

 Complex workflows with Airflow

DST 2018 2

Analytics-as-a-service

 Goals

 Developers, Service Providers & Infrastructure

Providers:

 Understand and manage services systems

 Service Providers:

 Understand customers and optimize business

 Examples

 Analyze monitoring information, logs, user activities, etc.

 Predict usage trends for optimizing business

 Techniques Big data analytics

 Handle and process big data at rest and in motion

DST 2018 3

Key issues in large-scale data

analytics

 Collect/produce messages from distributed application

components and large-scale monitoring systems

 Cross systems and cross layers

 Need scalable and reliable large-scale messaging broker

systems

 Require workflow and stream data processing capabilities

 Integrate with various different types of services and data

sources

DST 2018 4

Example from Lecture 4

DST 2018 5

Message

Queue

(MQTT/AMQP)

Ingest

Client

NoSQL

database

/Storage

…

Ingest

Client

Ingest

Client

IoT device

IoT device

IoT device

….

IoT device

IoT device

IoT device

• Should I use docker? VMs?

• Where elasticity can be applied?

• Topic/data distribution to ingest clients?

• Multiple topics

• Amount of data per topic varies

• Should not have duplicate data

in database

Implementation atop Google cloud

DST 2018 6

Source: https://cloud.google.com/solutions/architecture/streamprocessing

Example: monitoring and security

DST 2018 7

Security-related information

and metrics from distributed

customers

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Example: Bigdata analytics in SK

Telco

DST 2018 8

Source: Yousun Jeong https://www.slideshare.net/jerryjung7/stsg17-speaker-yousunjeong

Cloud services and big data analytics

Data sources

(sensors, files, database,

queues, log services)

Messaging systems

(e.g., Kafka, AMQP,

MQTT)

Storage and Database

(S3, Google BigQuery, InfluxDB, HDFS,

Cassandra, MongoDB, Elastic Search

etc.)

Batch data processing

systems

(e.g., Hadoop, Airflow, Spark)

Stream processing

systems

(e.g. Apex, Kafka, Flink,

WSO2, Google Dataflow)

Elastic Cloud Infrastructures

(VMs, dockers, OpenStack elastic resource management tools, storage)

Warehouse

Analytics

Operation/Management/

Business Services

DST 2018 9

Recall: Message-oriented

Middleware (MOM)

 Well-supported in large-scale systems for

 Persistent and asynchronous messages

 Scalable message handling

 Message communication and transformation

 publish/subscribe, routing, extraction, enrichment

 Several implementations

DST 2018 10

MQTT
Amazon SQS

JMS

Apache Kafka

Recall: Workflow of Web services

 You learn it from the Advanced Internet

Computing course

 Typically for composing Web services from

different enterprises/departments for different

tasks many things have been changed in the

cloud environment

 For big data analytics and Analytics-as-a-

Service

 Tasks are not just from Web services
DST 2018 11

APACHE KAFKA

http://kafka.apache.org/ , originally from LinkedIn

DST 2018 12

http://kafka.apache.org/

Some use cases

 Producers generate a lot of realtime events

 Producers and consumers have different

processing speeds

 E.g. activity logging

DST 2018 13

Message queue

m3 m2 m1Producer

(100x)

Consumer

(10x)

 Rich and diverse types of events

 E.g. cloud-based logging

 Dealing with cases when consumers might be

on and off (fault tolerance support)

Which techniques

can be used to

control this?

More than message broker

 Messaging features

 For transferring messages

 Other frameworks in the ecosystem: RabbitMQ, Mostquitto

 Streaming processing

 Streaming applications handle data from streams

 Read and write data back to Kafka messaging

brokers

 Other frameworks in the ecosystem: Apache Flink

and Apache Apex

 High-level SQL-style: KSQL

 Other possibilities: SQL-liked + Java in Apache Flink

DST 2018 14

DST 2018 15

Kafka Messaging

Kafka cluster

Kafka Design
 Use cluster of brokers to

deliver messages

 A topic consists of

different partitions

 Durable messages,

ordered delivery via

partitions

 Online/offline consumers

 Using filesystem heavily

for message storage and

caching

DST 2018 16

producer

Broker

Broker

Broker

Broker

Consumer

Partition m m3 m2 m1

… … …

s3 s2 s1Partition s

Topic

Messages, Topics and Partitions

 Ordered, immutable sequence of messages

 Messages are kept in a period of time (regardless of

consumers or not)

 Support total order for messages within a partition

 Partitions are distributed among server

DST 2018 17

Source: http://kafka.apache.org/documentation.html

Consumers

 Consumer pulls the data

 The consumer keeps a single pointer indicating

the position in a partition to keep track the offset

of the next message being consumed

 Why?

 allow customers to design their speed

 support/optimize batching data

 easy to implement total order over message

 easy to implement reliable message/fault tolerance

DST 2018 18

Example of a Producer

DST 2018 19

Example of a consumer

DST 2018 20

Message delivery

 Still remember message delivery guarantees?

 At most once

 At least once

 Exactly once

DST 2018 21

DST 2018 22

Broker

Msg: “hello DST”Producer

(100x)

Consumer

B

Consumer

A

Consumer

C

What does it mean exactly one?

 Producer: Idempotent delivery no duplicate entry in the log

 Transaction-like semantics: either message to ALL partition topics or not at all

 Consumer behavior management

Scalability and Fault Tolerance

DST 2018 23

 Partitions are distributed

and replicated among

broker servers

 Consumers are

organized

into groups

 Each message is

delivered

to a consumer instance

in a group

 One partition is assigned

to one consumer

http://kafka.apache.org/documentation.html#majordesignelements

Partitions and partition replication

 Why partitions?

 Support scalability

 enable arbitrary data types and sizes for a

topic

 enable parallelism in producing and

consuming data

 But partitions are replicated, why?

 For fault tolerance

DST 2018 24

Partition Replication

The leader handles all read and write requests

DST 2018 25

Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013

Consumer Group

 Consumer Group: a set of consumers

 is used to support scalability and fault tolerance

 allows multiple consumers to read a topic

 In one group: each partition is consumed by only

consumer instance

 Combine „queuing“ and „publish/subscribe“ model

 Enable different applications receive data from the

same topic.

 different consumers in different groups can retrieve

the same data

DST 2018 26

Group rebalancing

DST 2018 27

Source: https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html

Key Questions/Thoughts

 Why do we need partitions per topic?

 arbitrary data handling, ordering guarantees,

load balancing

 How to deal with high volume of realtime

events for online and offline consumers?

 partition, cluster, message storage, batch

retrieval, etc.

 Queuing or publish-subscribe model?

 check how Kafka delivers messages to

consumer instances/groups
DST 2018 28

Kafka vs

RabbitMQ

Source: Philippe Dobbelaere and Kyumars

Sheykh Esmaili. 2017. Kafka versus

RabbitMQ: A comparative study of two

industry reference publish/subscribe

implementations: Industry Paper. In

Proceedings of the 11th ACM International

Conference on Distributed and Event-

based Systems (DEBS '17). ACM, New

York, NY, USA, 227-238. DOI:

https://doi.org/10.1145/3093742.3093908

DST 2018 29

STREAMING DATA

PROCESSING

DST 2018 30

Batch, Stream and Interactive

Analytics

Source: https://dzone.com/refcardz/apache-spark

DST 2018 31

Recall: Centralized versus distributed

processing topology

Complex Event Processing

(centralized processing)

Streaming Data Processing

(distributed processing)

Proces

sing

Usually only

queries/patterns are written
Code processing events and

topologies need to be

written

Event cloud

Event source

Proces

sing

Proce

ssing Proces

sing

node

node

node

node

node node

Two views: streams of events or cloud of events

DST 2018 32

Topology of operators

Structure of streaming data

processing programs

 Data source operator: represents a source of streams

 Compute operators: represents processing functions

 Native versus micro-batching

DST 2018 33

External source

Data source

Operator

Compute

Operator

Compute

Operator

Output/Sink

Operator

Data source

Operator

Key concepts

 Structure of the data processing

 Topology: Directed Acycle Graph (DAG) of operators

 Data input/output operators and compute operators

 Accepted various data sources through different

connectors

 Scheduling and execution environments

 Distributed tasks on multiple machines

 Each machine can run multiple tasks

 Stream: connects an output port from an operator to an

input port to another operator

 Stream data is sliced into windows of data for compute

operators

DST 2018 34

Implementations

 Many implementation, e.g.

 Apache Storm

 https://storm.apache.org/

 Apache Spark

 https://spark.apache.org/

 Apache Apex

 https://apex.apache.org/

 Apache Kafka and Apache Flink

DST 2018 35

Check:

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-1

http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-

processing-frameworks-part-2

Key common concepts

 Abstraction of streams

 Connector library

 Very important for application domains

 Runtime elasticity

 Add/remove (new) operators (and underlying

computing node)

 Fault tolerance

DST 2018 36

Abstraction of Data Streams

DST 2018 37

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can

be data described by a primitive data type or by a

complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements

(tuples)

In Apache Kafka: data element is <Key,Value> tuple

 Data stream is the key abstraction

Example of an Apex application in

Java

DST 2018 38

Processor/Operators

 Streaming applications are built with a set of

processors/operators: for data and computation

DST 2018 39

Source: https://apex.apache.org/docs/malhar/

 Some common

data operators

(related to other

lectures)

 MQTT

 AMQP

 Kafka

DST 2018 40

Why are the richness and diversity of

connectors important?

DST 2018 41

Time and stream processing

Can you explain the time notion and the

roles?

Fault tolerance

 Recovery

 At least once

 At most once

 Exactly once

 E.g. Kafka Streams: Exactly once and at least once

 Note the difference between messaging and

processing w.r.t fault tolerance

DST 2018 42

DST 2018 43

Some (interesting) features of Apache Apex

DAG of Operators

 Ports: for input and output data

 Data in a stream: streaming windows

DST 2018 44

Source: https://apex.apache.org/docs/apex-3.6/operator_development/

Processing data in operators

DST 2018 45

Different types of Windows: GlobalWindows, TimeWindows,

SlidingTimeWindows, etc.

Source: https://apex.apache.org/docs/apex/operator_development/

Node

Container

Execution Management

DST 2018 46

STRAM

Node

NodeNode

op op

op op

op

 Using YARN for execution tasks

 Using HDFS for persistent state

Understand YARN/Hadoop to

understand Apex operator execution

management

DST 2018 47

Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Scalability

 Locality configuration for deployment of

streams and operators

 Affinity and anti-affinity rules

 Possible localities:

 THREAD_LOCAL (intra-thread)

 CONTAINER_LOCAL (intra-process)

 NODE_LOCAL (inter-process but within a Hadoop

node)

 RACK_LOCAL (inter-node)

DST 2018 48

Operators Fault tolerance

 Checkpoint of operators: save state of

operators (e.g. into HDFS)

 @Stateless no checkpoint

 Check point interval:

CHECKPOINT_WINDOW_COUNT

 Recovery

 At least once

 At most once

 Exactly once

DST 2018 49

Example of Partitioning and

unification in Apex
 Dynamic Partition

 Partition operators

 Dynamic: specifying

when a partition should

be done

 Unifiers for combining

results (reduce)

 StreamCodec

 For deciding which

tuples go to which

partitions

 Using hashcode and

masking mechanism

DST 2018 50

Source:

https://apex.apache.org/docs/apex/application_development/#partitioning

Fault tolerance – Recovery in Apex

 At least once

 Downstream operators are restarted

 Upstream operators are replayed

 At most once

 Assume that data can be lost: restart the operator

and subscribe to new data from upstream

 Exactly once

 https://www.datatorrent.com/blog/end-to-end-exactly-

once-with-apache-apex/

DST 2018 51

Exercise

How to make sure no duplication results when we

recover End-to-End Exactly Once?

How to use hash and masking mechanism to

distributed tuples?

How to deal with data between operators not in a

CONTAINER_LOCAL or in THREAD_LOCAL

DST 2018 52

ADVANCED

WORKFLOWS/DATA PIPELINE

PROCESSING
DST 2018 53

Use cases

 Access and coordinate many different compute

services, data sources, deployment services,

etc, within an enterprise, for a particular goal

 Implementing complex „business logics“ of your

services

 Analytics-as a service: metrics, user activities

analytics, testing, e.g.

 Analytics of log files (generated by Aspects in

Lecture 3)

 Dynamic analytics of business activities

DST 2018 54

Workflow and Pipeline/data

workflow

 Workflows: a set of coordinated activities

 Generic workflows of different categories of tasks

 Data workflows data pipeline

„a pipeline is a set of data processing elements connected in

series, where the output of one element is the input of the next

one”

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

 We use a pipeline/data workflows to carry out a

data processing job

DST 2018 55

https://en.wikipedia.org/wiki/Pipeline_(computing)

Example of Pipeline in Apache

Beam

DST 2018 56

Source: https://github.com/apache/beam/blob/master/examples/java/src/main/java/org/apache/beam/examples/WordCount.java

Example with Node-RED

DST 2018 57

Figure source: Hong-Linh Truong, Enabling Edge Analytics of IoT Data: the Case of LoRaWAN, The 2018 Global IoT

Summit (GIoTS) 4-7 June 2018 in Bilbao, Spain

http://nodered.org

Data analytics workflow execution

models

DST 2018 58

Data analytics

workflows Execution Engine

Local Scheduler

job job job job

Web

serviceWeb

serviceWeb

service
Web

service

Data sources

Workflow and Pipeline/data

workflow

 But analytics have many more than just data

processing activities

 Storage: where is the data from? Where is the sink of

data?

 Communication of results

 is software or human the receiver of the analytics results?:

 Software: messaging, serverless function, REST API,

Webhook?

 People: Email, SMS, …

 Visualization of results: which tools?

DST 2018 59

DST 2018 60

Your are in a situation:

 Many underlying distributed processing

frameworks

 Apex, Spark, Flink, Google

 Work with different underlying engines

 Write only high-level pipelines

 Stick to your favour programming languages

Apache Beam

 Goal: separate from pipelines from backend

engines

DST 2018 61

Read data

analytics

Post-processing

result
Store analysis

result

Apache Beam

 https://beam.apache.org/

 Suitable for data analysis processes that can be

divided into different independent tasks

 ETL (Extract, Transform and Load)

 Data Integration

 Execution principles:

 Mapping tasks in the pipeline to concrete tasks that

are supported by the selected back-end engine

 Coordinating task execution like workflows.

DST 2018 62

Basic programming constructs

 Pipeline:

 For creating a pipeline

 PCollection

 Represent a distributed dataset

 Transform

[Output PCollection] = [Input PCollection] | [Transform]

 Possible transforms: ParDo, GroupByKey, Combine,

etc.

DST 2018 63

A simple example with Google

Dataflow as back-end engine

DST 2018 64

Beam SQL

 https://beam.apache.org/documentation/dsls/sql

/

 High level SQL-like statements

 Combine with Java APIs

 Common features

 Aggregation functions

 Windows

 User-defined functions

DST 2018 65

DST 2018 66

But what if you need diverse types of

tasks with various back-end

services?

 Workflow systems

Example of using workflows

DST 2018 67

Source: http://highscalability.com/blog/2015/9/3/how-agari-uses-airbnbs-airflow-as-a-smarter-cron.html

Security-related information

and metrics from distributed

customers

Representing and programming

workflows/data workflows

 Programming languages

 General- and specific-purpose programming
languages, such as Java, Python, Swift

 Descriptive languages

 BPEL and several languages designed for
specific workflow engines

68DST 2018

Key requirements for us in the

Cloud

 Rich connectors to various data sources

 Computation engines

 Different underlying infrastructures

 REST and message broker integration

DST 2018 69

DST 2018 70

Example with Apache Airflow

Airflow from Airbnb

 http://airbnb.io/projects/airflow/

 Features

 Dynamic, extensible, scalable workflows

 Programmable language based workflows

 Write workflows as programmable code

 Good and easy to study to understand concepts

of workflows/data pipeline

DST 2018 71

http://airbnb.io/projects/airflow/

Many

connectors

DST 2018 72

Airflow Workflow structure

 Workflow is a DAG (Direct Acyclic Graph)

 A workflow consists of a set of activities

represented in a DAG

 Workflow and activities are programed using

Python – described in code

 Workflow activities are described by Airflow

operator objects

 Tasks are created when instantiating operator

objects

DST 2018 73

Airflow from Airbnb

 Rich set of operators

 So that we can program different kinds of tasks and

integrate with different systems

 Different Types of operators for workflow activities

 BashOperator, PythonOperator, EmailOperator,

HTTPOperator, SqlOperator, Sensor,

 DockerOperator, HiveOperator,

S3FileTransferOperator, PrestoToMysqlOperator,

SlackOperator

DST 2018 74

Example for processing signal file

DST 2018 75

Example for processing signal file

DST 2018 76

Examples

DST 2018 77

Elasticity control for

Workflows/Data Flows

 How to scale the workflows?

 Scheduling in a large resource pool (e.g., using

clusters)

 Elasticity controls of virtualized resources

(VMs/containers) for executing tasks

 Distributed Task Queue, e.g. Celery
http://docs.celeryproject.org/en/latest/getting-

started/brokers/index.html

Job description/request sent via queues

Results from jobs can be stored in some back-end

DST 2018 78

http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

Other systems, e.g., AWS Data

Pipeline

DST 2018 79

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide

Hybrid service design

 Stream analytics triggers datapipes?

 Stream analytics triggers workflows?

 Stream analytics triggers serverless functions?

 And another way around?

DST 2018 80

Communicating results

 How to communicate results to the end user or

other components?

 Software integration with protocols and

interactions in previous lectures

 People: conversational commerce

 More than just using SendGrid, Applozic, etc.

DST 2018 81

Source: https://developer.amazon.com/alexa-voice-service

Source: https://ai.googleblog.com/2018/05/duplex-ai-

system-for-natural-conversation.html

Summary

 Analytics-as-a-service for large-scale distributed

applications and big data analytics require different set

of tools

 Kafka, Apache Apex and Airflow are just some of the

key frameworks

 There are a lot of tools

 Need to understand common concepts and

distinguishable features

 Select them based on your use cases and application

functionality and performance requirements

 Exercises:

 a small application utilizing Kafka/MQTT and Apache Apex

 Log analytics using AOP and Kafka and Airflow
DST 2018 82

Further materials

 http://kafka.apache.org

 http://www.corejavaguru.com/bigdata/storm/stream-groupings

 https://cloud.google.com/dataflow/docs/

 http://storm.apache.org/

 https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-

documentdb/

 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

 https://medium.com/walmartlabs/how-we-embraced-the-new-release-of-apache-kafka-

9cf617546bb6

 https://hevodata.com/blog/exactly-once-message-delivery-in-kafka/

 https://dzone.com/articles/kafka-clients-at-most-once-at-least-once-exactly-o

DST 2018 83

https://camel.apache.org/enterprise-integration-patterns.html
https://cloud.google.com/dataflow/docs/
http://storm.apache.org/
https://azure.microsoft.com/en-us/documentation/articles/hdinsight-storm-iot-eventhub-documentdb/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://medium.com/walmartlabs/how-we-embraced-the-new-release-of-apache-kafka-9cf617546bb6
https://hevodata.com/blog/exactly-once-message-delivery-in-kafka/

84

Thanks for
your attention

Hong-Linh Truong

Faculty of Informatics, TU Wien

hong-linh.truong@tuwien.ac.at

http://www.infosys.tuwien.ac.at/staff/truong

@linhsolar

DST 2018

